Search

SealBoss News / Blog

Leaking Crack Repair

leaking crack repair

Leaking Crack Repair

Coached by a Top Industry Professional

In the world of construction and maintenance, “leaking crack repair” is a term that frequently emerges, particularly when addressing structures that contain water or are vulnerable to moisture and water intrusion. Addressing these cracks swiftly and efficiently is vital for the structure’s safety and durability. 

Sealing the Future – Preserving the Past
Since 1988

Leaking Crack Repair

Coached by a Top Industry Professional

In the world of construction and maintenance, “leaking crack repair” is a term that frequently emerges, particularly when addressing structures that contain water or are vulnerable to moisture and water intrusion. Addressing these cracks swiftly and efficiently is vital for the structure’s safety and durability. 

Sealing the Future – Preserving the Past
Since 1988

The Need for Crack Injection Training

A prominent general contractor, who usually subcontracts such tasks, expressed the need for immediate crack injection training on a specific jobsite. Their primary aim was to acquire the expertise for smaller projects, allowing them to handle leaking crack repair internally on certain timely projects. This proactive approach not only saves time but also ensures that minor issues can be addressed before they escalate.

leaking-crack-repair-sealboss

A Case Study: Water Treatment Tank Crack Sealed

Scope: New Concrete Tank – Water Test Failure – Asses and Seal

The facilities in question comprised three holding cells, separated by two poured-in-place division walls. During a leak test on the outer two tanks, visible cracks were detected. These cracks, deemed non-structural for repair purposes, showed signs of dampness and minor leaks, emphasizing the need for immediate leaking crack repair. Pressure crack injection with a hydrophobic polyurethane expanding water stop foam utilizing an electric injection pump and mechanical injection packers was specified as the method of restoration.

The Repair Process

Materials Used: SealBoss 1570, SealBoss 15x 
Additional Tools:  SealBoss 13-60S packers, SealBoss 495 Injection Pump, Hammer Drill w/ 12” x ½” bit, PPE

For training purposes, a weeping crack was chosen for repair. This crack, though narrow, spanned about 10 feet in height and meandered across the wall. Given that the newly constructed wall was 14 inches thick, the repair strategy involved guiding the team to drill 5 to 7 inches out from the crack. The drilling was done at a 45-degree angle, aiming back towards the crack, employing the crack stitch method. 

Depth of Intersection: The further the drill hole is from the crack, the deeper it will intersect the crack within the structure. This results in a more profound point of injection.

Considerations for Thicker Structures: A deeper injection point is often preferred in thicker structures. However, the length and reach of the drill bit play a crucial role in determining the optimal distance for the drill hole.

Avoiding Dead-End Drill Holes: A drill hole that misses the crack won’t facilitate the injection of the chemical grout into the structure. Such holes are termed “dead-end drill holes” and are ineffective for the purpose of grout injection.

In summary, while determining the spacing of drill holes, it is vital to balance the desired depth of injection with the capabilities of your drilling equipment to ensure effective grout injection.

leaking crack repair injection packer drilling

To ensure precision, the placement was set parallel to the fissure. A 0.5-inch masonry bit, attached to a hammer drill, was used for the drilling process. Once the clean, crack-intersecting holes were established, SealBoss 13-60S heavy duty steel injection packers were installed.

The repair commenced from the bottom, progressing upwards. The SealBoss 495 injection pump, paired with the SealBoss 1570 NSF/ANSI/CAN 61 drinking water contact certified chemical grout, was used for the leaking crack repair. As the repair proceeded, water and material were observed exiting the substrate. This was a positive sign, indicating effective penetration and successful stopping of the water penetration and sealing of the crack.

Final Thoughts

Leaking crack repair is an essential aspect of maintaining the structural integrity of buildings and facilities. With the right knowledge, tools, and materials, such as those provided by SealBoss Corp., even the most challenging cracks can be effectively addressed. Whether you’re a contractor looking to expand your skill set or a facility manager aiming to maintain your structures, understanding the nuances of leaking crack repair is invaluable. Our SealBoss Water Stop Specialists are always ready to assist you.

Contact Your SealBoss ® Technician

Crack Injection Tools & Accessories

Crack Injection Tools & Accessories

Crack Injection Tools & Accessories: Your Ultimate Source for Professional-Grade Solutions

As a leading supplier of concrete crack repair solutions, we are excited to offer an extensive selection of crack injection tools and accessories designed to meet the needs of both low and high-pressure injection systems.

Our product line is engineered to support a wide range of project requirements, ensuring that whether you’re working on large-scale commercial projects or smaller residential repairs, you have access to the tools you need for success.

From experienced contractors to first-time repair professionals, our comprehensive range of high-quality components ensures that your crack repair toolkit is fully stocked, enabling you to execute foundation crack repairs with confidence and precision

Crack Injection Tools & Accessories

Why Choose Our Crack Injection Tools & Accessories?

  • Versatile Solutions: We cater to both low and high-pressure injection systems, providing flexibility for a variety of applications, from minor cracks to significant structural repairs.

  • High-Quality Components: Every item in our product line is crafted with durability and efficiency in mind, giving you the tools you need for successful, long-lasting repairs.

  • Suitable for All Experience Levels: Whether you’re a seasoned professional or tackling crack injection for the first time, our tools are designed for ease of use without compromising performance.

Elevate your crack repair work with our Crack Injection Tools & Accessories – because successful foundation restoration starts with having the right tools.

Crack Injection Tools & Accessories – Dependable Solutions for Every Project

At the core of our offering is a commitment to providing reliable and effective crack injection tools and accessories that ensure your repairs stand the test of time. We recognize that no two projects are the same, which is why our range has been carefully curated to meet the diverse requirements of low and high-pressure injection systems.

Regardless of your level of experience, our tools are engineered to help you achieve professional results. From injection ports to specialized pumps and accessories, each item is designed to make the process smoother, more precise, and ultimately more successful.

Unmatched Technical Support

In addition to offering premium products, we are dedicated to ensuring you have the support you need to use them effectively. Our expert technical support team is available to provide guidance, answer any questions, and help you make informed purchasing decisions. Whether you need advice on selecting the right tools or troubleshooting during the repair process, we are here to ensure your foundation restoration is completed with the utmost precision and efficiency.

Your success is our success, and we stand behind every product we offer with unparalleled after-sales support. Trust us to help you achieve flawless crack repairs, every time.

Start your foundation restoration journey with our Crack Injection Tools & Accessories — because lasting success begins with the right tools.

Contact Your SealBoss ® Technician

Crack Injection Pressure

Crack Injection Pressure

Polymer Crack Injection

Crack Injection Pressure

Understanding Injection Pressures: A Guide to Polyurethane, Acrylate, and Epoxy Repairs

Introduction

Mastering injection pressures is essential for successful concrete crack repair, influenced by crack type, repair material, and environmental factors. Understanding the dynamics of pressure during injection, particularly as it relates to foam expansion and viscosity changes in resins and gels, is essential for professionals aiming to prevent complications such as spalling or insufficient penetration, and ensure a high-quality, lasting repair.

This guide compares the injection pressures required for polyurethane, acrylate, and epoxy materials, providing insights into optimizing repair strategies for improved outcomes

Assessing Injection Pressures and Product Flow:

Comparing Polyurethane, Acrylate, and Epoxy Crack Injection Characteristics

Within the realm of concrete crack injection, the pressures required for a successful repair can significantly vary. This variance is influenced by the specific conditions of the injection environment and the particular products utilized.

The pressures needed to advance the product are governed by the product’s viscosity and the extent of the crack, specifically the resistance the injected substrate presents to the product’s progress.

Generally, it can be stated that narrower, hairline cracks require increased pressure for successful injection, similar to products with greater viscosity.

POLYURETHANE FOAM CRACK INJECTION PRESSURES

In injection jobs involving polyurethane foam and hairline cracks, the necessary injection pressure often leans towards the high side and may exceed 1000 psi under certain circumstances.

During the injection process, when the foam begins to expand upon contact with water, the product’s viscosity increases sharply. This surge can cause back pressure to rise significantly, potentially reaching extreme levels of 1500-2000 psi or higher, depending on the equipment used.

Excessive injection pressure can lead to concrete spalling, a serious risk that may cause additional complications. This underscores the importance of careful handling and precise pressure management throughout the injection process to prevent damage and ensure a successful outcome.

In these instances, it is strongly recommended to avoid setting the injection packers too shallowly. Instead, the use of longer injection packers, capable of reaching more deeply into the drill hole, is advisable.

This strategy serves to minimize the risks associated with high-pressure injection, contributing to a safer and more effective repair process.

In particularly challenging scenarios, it could be a beneficial strategy to think about transitioning to an ultra-low viscosity polyurethane resin, such as SealBoss 1403 SLV – which boasts a viscosity of a mere 70 cps – or consider an Acrylate Polymer.

ACRYLATE POLYMER INJECTION PRESSURES

Alternatively, you might consider an acrylate-based product, like SealBoss 2400 Acrylate, recognized for its viscosity that nearly parallels the low levels observed in water.

These super low viscosity polymers possess the remarkable ability to infiltrate even the finest of hairline cracks with considerable depth. Consequently, they facilitate the formation of a dependable and flexible seal, while reducing the risk of spalling during the process. 

Compared to polyurethane injection foams, the exceptionally low viscosity of acrylate gels can provide enhanced penetration capabilities in very tight spaces at lower pressures.

The use of these advanced products can greatly enhance the effectiveness and reliability of concrete repair interventions.

Acrylate Injection Gel is also used for curtain and bladder injection which is mostly performed at lower injection pressures.

EPOXY CRACK INJECTION PRESSURES

Generally, the pressures involved in epoxy injection can be regarded as significantly lower when compared to those utilized in polyurethane crack injection.

SealBoss Epoxy resins are available in both low and super low viscosity grades. These resins maintain a stable viscosity during the injection process and thus allowing an even flow through the crack.

The process of epoxy injection is executed via ports installed on the surface, which are secured onto the crack with an anchoring epoxy paste. This paste also serves to completely seal the crack’s surface. Adhesively attached epoxy ports, along with the epoxy surface seal, are not built to withstand exceptionally high injection pressures.

As long as a consistent product flow is maintained during injection, most epoxy crack injection tasks can be successfully performed at very low injection pressures. These pressures typically do not exceed a few hundred psi at most.

PRO TIP

As you embark on a concrete crack injection job, it’s recommended to start with an exploratory or mock-up injection phase.

During this phase, identify a distinctly outlined, potentially actively leaking crack that extends deep into the structure for the first injection. This initial phase enables the precise estimation of the necessary quantity of material and the required injection pressures.

It is advised to keep close track of the material consumption and make measurements of the injection pressures needed to push product deep into the structure. Monitoring these aspects assists in developing a clearer understanding of the project’s conditions and planning the subsequent injection process more effectively.

Contact Your SealBoss ® Technician

Restoration Waterproofing

Restoration - Waterproofing

Restoration – Waterproofing with Injection Resins, Gels, and Foams

Restoration waterproofing projects represent a mix of various complex tasks, each with its unique set of challenges. The first crucial step is identifying the root source of the water infiltration, which at times can be a difficult process.

Diagnosis

A correct leak diagnosis might necessitate various steps, such as performing visual inspections of the inside and outside of the structure, examining the surrounding conditions, conducting flood tests, utilizing dye testing, creating mock-ups, and removing paints and finishes. 

Setting Defined Objectives

Before starting a restoration waterproofing project, it is crucial to clarify the goals and expectations for every party involved.

It goes without saying that the primary aim of such a venture typically revolves around halting water intrusion. There are many techniques and products that can be used for this, such as polyurethane injection foams, gels, and resins, as well as acrylate injection gels and even epoxy resins in some circumstances. These methodologies come with their individual costs, levels of site disruption, and project timetables. It is essential that all of these elements are thoroughly considered and presented to the end customer, facilitating an informed decision-making process.

Understanding Water Movement and Migration

It is indispensable to understand some key concepts related to water migration and movement around and within soil,  structures, voids, joints, and cracks.

Water is Not Always Visible

The obvious appearance of a leak in a specific location does not definitively imply that other areas are devoid of water ingress. Water invariably seeks the path of least resistance, typically navigating towards any openings, fissures, and low spots. Upon remediation of these lower areas, the water may find its way to other compromised zones.

Leak Detection Techniques

The leak detection process is further complicated if the repairs are undertaken during a period of relative dryness. Under such circumstances, leak migration might not become evident until the advent of the next rain event. For more controlled testing, it may be advisable to deliberately flood the surrounding area, creating conditions that could induce a leak at the time of inspection and repair. Conducting flood testing before, during, or after the repair work can contribute significantly towards pinpointing any areas where the leak may have migrated. Executing waterproofing repairs amidst active leaking can effectively help identify and repair leak migration issues.  

Restoration Waterproofing Products 

Polymer injection foams, resins and gels serve as viable solutions in restoration waterproofing. Their superior qualities make them ideal for sealing leaks, even in wet environments. Polyurethane foams are adept at sealing large leakages, both in volume and speed, expanding upon contact with water to block infiltrations effectively. On the other hand, super low viscosity resins and gels ensure a long-lasting solution for smaller, more intricate leaks, seeping into hairline cracks and curing to provide a waterproof seal. Implementing curtain injection behind a structure can effectively generate a waterproof, membrane-like barrier, thus sealing wet and damp spots within concrete and masonry structures.

At times, epoxy resins may be required to restore structural integrity, even in wet or damp conditions. For an in-depth comparison between epoxy and polyurethane injection, please refer to the detailed information provided here.

In Conclusion

Remedial restoration waterproofing is often an iterative, exploratory process that might necessitate adjustments along the way. Setting realistic expectations, keeping open lines of communication among all involved parties, and maintaining a keen eye for detail are important to the efficient and successful execution of a waterproofing process.

A well-executed waterproofing restoration can add years to the lifespan of a structure, safeguarding it against potential damage and preserving its aesthetic and functional value.

Leak Sealing Foam Grout
Water Stop Foam Grout
Hydrophobic Injection Foam Grout

Our #1 Selling Polyurethane Injection Foam
Water Cut-Off Injection Grout
1510 PU Foam & Oakum Pipe Plug Kit

Leak Sealing Foam Grout
Water Stop Foam Grout
Hydrophobic Injection Foam

Flexible Polyurethane Injection Foam
Flexible Foam, Water-Activated chemical grout. 

Leak Sealing Foam Grout
Water Stop Foam Grout
Hydrophobic Injection Foam

Super Low Viscosity Polyurethane Injection Foam,
Water-Activated chemical grout. Drinking Water

Accelerator for SealBoss Single Component Injection Foams

Accelerator For 1510/1570 PU Injection Foam. Adjust foam gel-time and foam expansion from low foaming to high foaming depending application.

Leak Sealing Injection Resin
Super Low Viscosity PUR Injection Resin

Two Component Flexible Resin
The solution for wet and dry surfaces and moving cracks. Extremely low viscosity for superior penetration in hairline crack injection.

Leak Sealing Injection Gel
Hydrophilic Injection Foam Gel
Hydrophilic Gel

Versatile Hydrophilic Polyurethane Foam-Gel
Water activated single component hydrophilic Polyurethane grout. 

Leak Stop
Leak Sealing
Acrylate Gel
Acrylic Gel

Poly Acrylate Gel
Hydrophilic poly-acrylate gel / acryclic gel for soil stabilization, curtain-injection, infusion bladder injection into structures and to seal degrading masonry grout.

Contact Your SealBoss ® Technician

How to Fix Foundation Cracks

Popular Mechanics – Pop Mech Pro, Publishes Article with Detailed Pictures about “How to Fix Foundation Cracks”, using the SealBoss Crack Repair Method with Specialized Leak-Sealant and Injection Packers:

Concrete cracks have been an issue since the beginning of concrete construction three millennia ago. The article explains that modern concrete lacks self-healing properties, which causes cracks to worsen over time and impacts both homeowners and engineers.

Popular Mechanics’ century-old building in Easton, Pennsylvania, suffered from cracked concrete until local contractor repaired it. They used a specialized leak-sealant from SealBoss and ordinary tools to fill and seal the cracks, preventing further water entry and degradation.

The article discusses the SealBoss 1510 Water Stop Foam solution for fixing concrete cracks, a common issue affecting many structures from homes to bridges.

The article highlights how modern concrete deteriorates over time due to water seepage through cracks.

  • “After the water-stopping material has hardened into a plastic foam, the contractors removed it from the wall and floor with putty knives and scrapers. They removed the packer with a socket and socket wrench, then filled the remaining hole with mortar. With that, the job is complete.” 

     Popular Mechanics, Roy Berendsohn

The solution presented in this article and involves a straightforward repair method demonstrated by the contractor, using ordinary tools and SealBoss 1510 specialized leak-sealant from SealBoss. The process includes drilling holes along the crack, inserting injection ports, and injecting an expanding liquid polyurethane resin mixed with an accelerator to seal the crack effectively.

This method has proven successful in preventing further leaks through the foundation of the century-old building occupied by Popular Mechanics in Easton, Pennsylvania, showcasing its effectiveness in concrete crack repair.

  • “We were amazed at the simplicity of the process and the good results it produced–we haven’t seen any further leaks through the foundation since the two men completed their work.”

    Popular Mechanics, Roy Berendsohn

References

 Link to the article — “How to Fix Foundation Cracks”
Popular Mechanics, Pop Mech Pro, 1/24/2024, by Roy Berendsohn

SealBoss Crack Repair Kits

SEALBOSS-1510
SealBoss1510
SEALBOSS-1570-LV-SMALL
SealBoss1570
SEALBOSS-1570-LV-SMALL
SealBoss 1570LV
SEALBOSS-FLEXGEL-SMALL
SealBoss FlexGel
SEALBISS-15X-SMALL
SealBoss 15x
SealBoss 2400
Injection Packers
SealBoss Injection Packers
Contact Your SealBoss ® Technician

Parking Garage Crack Injection | Leak Sealing Repair

Parking Garage Crack Injection

Structural and Leak Sealing Repairs

Introduction:

For effective and long term parking garage crack injection repair, the use of specific injection products for waterproofing and structural crack repair is pivotal.

For leak sealing, polyurethane foam resins, hydrophilic gels, and acrylate / acrylic gels are commonly employed. These resins, when injected, either react with water to form a foam that expands or create a gel product respectively, filling voids and sealing against further water ingress. This method not only prevents water penetration but also adds to the structural integrity of the parking facility.

On the other hand, for structural strength crack injection, epoxy resins are predominantly used. These resins are known for their high-strength bonding capabilities, effectively sealing cracks and restoring the concrete’s original strength. Epoxy resins are particularly advantageous in load bearing environments, providing strength and restoring the concrete’s structural integrity.

Both types of injection product groups are crucial in extending the lifespan of parking structures, ensuring they remain safe and functional for daily use.

Parking Garage Crack Injection Technology

For over three decades, SealBoss Crack Injection Systems have been at the forefront of providing effective solutions for structural repairs and sealing leaks in cracks and joints within parking garage structures. These systems have proven successful in not only preventing water ingress but also in preserving the integrity and functionality of parking facilities.

Parking Garage Crack Injection Leak Sealing Repair

Parking Garage Crack Injection Leak-Seal RepairInjection of concrete parking structure in St. Louis, Missouri using the SealBoss Water Stop System

How to Seal Leaks in Voids, Cracks, Joints, and Seal Around Beams

In a technical support role for a leading infrastructure repair company, the job often involves providing assistance to clients on a wide array of repair projects. These projects range across a diverse spectrum, including concrete repair, waterproofing, slab lifting, soil stabilization, and permeation grouting.

Recently, there was an instance of providing consultation to a contractor. The focus was on addressing water leaks by injecting materials into voids, cracks, joints, and beam pockets that had previously been treated with mastic grout.

The area where the leaks persisted were directly below the sidewalk where the concrete meets the asphalt driveway.  After inspecting the above ground conditions closely it was determined that the main source of the water intrusion were gutter downspouts. There were no drains installed to manage the directional flow of rainwater away from the structure.

Now that the source and path of water ingression had been established, polyurethane pressure injection of the affected areas was confirmed to be the correct solution to seal the leaks. 

The first areas that needed to be sealed were leaking beam pockets which had been previously filled with a mastic patch grout. Over a 30 year period there had been multiple previous attempts by various contractors to repair the leaking areas. No records were available on the various works that had been performed.

It was decided to inject through the wall to the back side of the structure to cut off any water before it could find its way into the beam pockets. This method combines void fill and permeation grouting as product is injected beyond the structure into a space that in this instance is confined by concrete / steel, asphalt and dirt. As the foam disperses under pressure injection and during expansion, it partially migrates / permeates also into the dirt further enhancing the ability to seal the void.

Using two strategically placed SealBoss Evolution 13-100 AL packers, the contractor injected 1510 Water Stop Foam, catalyzed with 10% 15x Accelerator,  at several intervals, permitting the resin to expand to a dense foam creating a seal and protecting the beam pocket from any water intrusion from behind the wall. 

The injection process was monitored from the inside and outside and the contractor stopped injection once air bubbles and water were observed coming up through the asphalt driveway. Expanding foam displaced water in the affected area. Injection was continued at a slow rate until water displacement  finished and increasing resistance indicated full penetration.

Next, the contractor injected all visible and leaking cracks some of which at one point had been injected with a structural / rigid epoxy which had failed. Reason of epoxy failure was determined as either lack of bond due to actively leaking cracks during epoxy injection and/or failure due to crack movement such as contraction and expansion. Polyurethane injection is the preferred method to address actively leaking and water bearing cracks, especially in areas where structural repairs are not necessary. The two foot thick wall was injected with 1510 leak-seal foam in intervals till the crack showed refusal of the resin.

Epoxy Versus Polyurethane Comparison – click here.

On-site support from knowledgeable and experienced technical reps is available upon request, I personally cover from North Dakota and Minnesota down through Texas.  Call us with any questions, we look forward to helping you find a solution.

Materials and Tools Used

Related Articles

Structural Parking Garage Repairs with High Strength Epoxy Resins

Learn More

Please don’t hesitate to call us at 714-662-4445 with any questions, or request to be contacted here, we look forward to helping you find a solution. On-site support from knowledgeable and experienced technical reps is available upon request.

Check out our Leak Sealing Repair Kits.

  • Polyurethane Grout Injection Pump
  • Polyurethane Foam Injection Pump
  • Easy To Use
  • Easy To Cean
  • Easy To Maintain
  • Modular, Compact &
  • Sturdy Design
  • Single Component
  • Electric Drill Operated
  • Heavy Duty For Daily Use
  • Pressure Gauge, Hose Set, Hopper Included
  • Recommended For Beginners & Injection Pros
  • > 5000 PSI Injection Pressure Possible
Contact Your SealBoss ® Technician

Retaining Wall Repair

Retaining Wall Repair

Injection Methods Compared
retaining wall repair

Understanding Retaining Wall Repair:

Polyurethane vs. Epoxy Injection Methods

Retaining walls play a pivotal role in infrastructure and landscape, offering both functional support and aesthetic appeal. These structures, while robust, are susceptible to environmental factors and age related weakening that can lead to cracks, spalls, water leakage, or other forms of structural damage.

Addressing these issues promptly and effectively is crucial to ensure the longevity and safety of the wall. In the realm of deep penetrating, effective sealing and high strength structural retaining wall repairs, two methods have emerged as frontrunners: Polyurethane and Epoxy injection.

This overview explores the intricacies of both methods, comparing their advantages, applications, and effectiveness to guide you in making an informed decision for your retaining wall repair needs.

SEALBOSS PU ICON

Retaining Wall Repair
with Leak Sealing Polyurethane Water Stop Foam Injection

Retaining walls serve as crucial components in construction projects, especially when dealing with slopes or elevated terrains. Their primary function is to combat soil erosion and bolster the stability of structures by resisting the pressures of soil and water. Yet, like all structures, retaining walls are prone to wear and tear, often manifesting as water leakage and subsequent erosion.

Enter polyurethane injection, a game-changer in the realm of retaining wall repairs. This method stands out not only for its efficacy but also for its cost-efficiency. Unlike traditional repair methods that might involve extensive excavation, the use of heavy machinery, or prolonged construction periods, polyurethane injection offers a swift and minimal-disruption solution. The essence of this method lies in the foam grout injected, which forms a resilient waterproof barrier, crucial for walls constantly exposed to moisture and hydrostatic pressure.

At its core, polyurethane injection foam is engineered to expand upon water contact. Typically, this foam is introduced into cracks or voids within a structure. Upon encountering water, a chemical reaction is triggered, causing the foam to swell and occupy the space. This unique expanding property is invaluable for tasks like leak sealing, ensuring that the foam aptly fills gaps and halts further water penetration.

The combination of low viscosity, fast expansion and curing, flexibility, good chemical resistance and adhesion, make polyurethane injection foam grout an effective choice for leak seal and water stop injection applications.

Here are some advantages of using PUR foam for stopping water migration through retaining walls:

  • Cost-effective — Polyurethane injection is a cost-effective solution for repairing a leaking retaining wall. It requires less labor, time, and materials compared to traditional methods of repair, such as excavation and replacement
  • Water Stop Leak Sealing and Waterproofing — The injected polyurethane resin expands on contact with moisture and creates a waterproof compression seal that prevents further water infiltration into the retaining wall
  • Minimal-Invasive — Polyurethane injection requires minimal disruption to the surrounding area, making it a convenient solution for homeowners and business owners. It does not require excavation, heavy machinery, or lengthy construction timelines
  • Quick — Polyurethane injection can be completed quickly compared to traditional methods, minimizing the time that the retaining wall is out of commission and minimizing disruptions to daily activities
  • Durable — The injected polyurethane resin creates a strong and flexible bond with the concrete surface, making it a durable and long-lasting solution for sealing a leaking retaining wall

Summary

Polyurethane injection is a cost-effective, waterproof, minimal-invasive, quick, durable, versatile, and eco-friendly solution for sealing a leaking retaining wall. If you are facing a leaking retaining wall, consider using this method for an efficient and effective repair solution.

Leak Sealing System
SEALBOO-1510-VIDEO
SB 1510 Foam
sealboss-packers
Injection Packers
Injection Packer Spacing SealBoss Grout
PUR vs Epoxy
SEALBOSS EPOXY ICON

Retaining Wall Repair
with Epoxy Resin Injection For Structural Strength

Retaining walls play an indispensable role in both landscape and infrastructure, acting as bulwarks against soil erosion and providing essential structural support. Yet, like all structures, they are vulnerable to the elements, facing challenges like natural degradation, water-induced damage, and the relentless pressure from the soil. Over time, these factors can result in cracks, voids, and other structural concerns. Left unaddressed, these issues can jeopardize the wall’s stability and safety. This is where epoxy resin injection comes into play, offering a robust solution to restore and reinforce a retaining wall’s strength.

Here is a closer look at the benefits of using epoxy resin injection for retaining wall reinforcement:

  • Structural Strength Repair — Retaining walls can lose their structural strength due to natural wear and tear, crack development, water damage, and soil pressure. Epoxy resin injection can fill and reinforce the damaged areas, restoring the retaining wall’s strength and stability. Epoxy resin, known for its high compressive and tensile strength, can fortify damaged areas, resisting both compressive and tensile forces. Its ability to prevent crack propagation and bear significant pressures and loads makes it a prime choice for restoring walls facing soil and water pressures

  • Durability — Epoxy resin injection is a durable solution for retaining wall repair. Epoxy resin is resistant to water, many chemicals, and typical ambient heat. It also resists wear and tear, making it a long-lasting solution that can withstand the test of time

  • Cost-effectiveness — Opting for epoxy resin injection can be a financially savvy decision. When compared to the steep costs associated with wall replacement—which often involves excavation, demolition, and rebuilding—epoxy injection emerges as a cost-effective alternative

  • Minimal-Invasive — Epoxy resin injection is a minimal-invasive solution for repairing retaining walls. It does not require excavation, heavy machinery, or lengthy construction timelines, minimizing the disturbance to the surrounding area

  • Quick — Time is of the essence in repair projects. Epoxy injection offers a faster turnaround than many traditional methods, ensuring the retaining wall is swiftly restored to functionality, with minimal disruption to daily routines

Summary

Epoxy resin injection is a reliable and efficient solution for structural retaining wall repair, offering a range of advantages such as durability, high compressive and tensile strength, cost-effectiveness, and minimal-invasiveness. 

For any structural repair project, it is highly recommended to seek guidance from a professional engineer to assess the suitability of epoxy injection. Additionally, it is important to hire a skilled and experienced epoxy injection contractor who can perform the repair in accordance with the specifications. This ensures that the repair is conducted safely and effectively, and that the structure is restored to its optimal condition. It is crucial to prioritize safety and quality when it comes to structural repairs — expert advice and hiring competent professionals can help to achieve these goals.

Tenacious Crack-Sealing Epoxy Grout SealBoss 4040 LV
Epoxy System
Tenacious Crack-Sealing Epoxy Grout
SB 4040 Epoxy
epoxy port-SURFACE-PORT-SEALBOSS
SB Epoxy Ports
EPOXY-CRACK-INJECTION-SEALBOSS
Epoxy vs PUR

Conclusion

Retaining Wall Repair – Polyurethane or Epoxy Injection

  • Polyurethane foam injection can be applied effectively in a wet environment where active water leaks are present. When the foam is injected, it expands and creates a water-resistant barrier that forms a permanent, flexible or semi-flexible seal upon contact with water. In most cases, there is no need to surface seal cracks before injecting the foam. Injection packers can be installed in wet environments and injection is not impacted by active water flow. While water-bearing cracks can lead to structure deterioration and erosion over time, they often do not compromise the structural integrity of the building if recognized early and sealed promptly

  • While structural epoxy injection can effectively restore a retaining wall’s strength and integrity, it is most effective in a dry environment. Epoxy is not well-suited to stop active water leaks. The injection area requires more preparation work, and it is recommended to surface seal cracks before injecting the epoxy. Surface ports do not adhere well in very wet environments. This repair method is more time-consuming and labor-intensive compared to polyurethane foam injection, and it can be more expensive

In summary, both polyurethane foam injection and structural epoxy injection are effective repair methods for retaining walls. Polyurethane foam injection is a highly effective method for preventing water infiltration, stopping active water flow, and efficiently and permanently sealing cracks. Structural epoxy injection is most suitable for application in environments that are not actively leaking and require additional support for significant structural damage in the wall.

Ultimately, the choice of injection repair method will depend on the specific project requirements.

It is always recommended to consult with a qualified professional to determine the best approach for your retaining wall repair needs.

Contact Your SealBoss ® Technician

Retaining Wall Crack Injection Repair

Retaining Wall Crack Injection Repair

Using Leak Sealing Foam

Retaining Wall Crack Injection Repair using Leak Sealing Foam offers a swift and dependable solution to address cracks responsible for water infiltration and subsequent erosion. Here is a quick guide to this repair process:

1. Site Preparation
Begin by ensuring the site is ready for the repair. Clear away any debris, dirt, and loose materials to provide a clean working surface.

2. Crack Assessment
Identify and evaluate the cracks in terms of their depth and length. While visible cracks are obvious targets, it’s crucial to be vigilant about potential hidden cracks that might escape a cursory glance. Such concealed cracks might necessitate a more thorough examination.

3. Drilling Injection Point Holes
Once the cracks are mapped out, drill holes into the retaining wall. These should be spaced roughly 12 inches apart, running along the entirety of each crack.

4. Packer Installation
Insert the injection packers into the freshly drilled holes, ensuring they’re firmly anchored. These packers act as conduits for the polyurethane foam during the injection phase.

5. Foam Injection
With the packers in place, it is time to inject the prepared leak sealing foam. Utilizing the appropriate equipment, start the injection at the lowest point, working your way up. Continue this process until the foam either refuses to enter further or you’ve covered the entire crack.

6. Curing and Final Touches
Post-injection, allow the polyurethane foam ample time to cure, adhering to the manufacturer’s guidelines. Once cured, remove the packers and seal the holes using a compatible sealant.

In summary, the use of leak sealing foam for Retaining Wall Crack Injection Repair is a tried-and-true method, ensuring cracks are effectively sealed, preventing any future water ingress.

Retaining Wall Crack Injection Repair Guide

Retaining Wall Crack Injection Repair with SealBoss 1510 Leak Sealing Foam

When it comes to the restoration of older commercial buildings, retaining wall crack injection repair emerges as a crucial method for preserving architectural integrity. A recent case involved a 50-year-old commercial structure that required  rehabilitation, particularly for its below-grade retaining wall. This wall, adjacent to a staircase, displayed multiple through cracks and evident efflorescence.

Choosing the Right Repair Product

Given the challenges posed by groundwater seepage, especially after heavy rainfall, SealBoss 1510 Leak Sealing Foam was chosen for the job. This product was injected at high pressure to address the cracks before the concrete wall underwent refacing.

Insightful Inspection

A detailed inspection revealed that the main, larger cracks were accompanied by smaller, branching cracks. The retaining wall, showing clear signs of honeycombing and pitting, was constructed with an 8-inch thickness. However, the design and layout of the rebar remained unknown.

Strategic Packer Placement

The unique challenges of this retaining wall crack injection repair, such as uncertain rebar spacing and the wall’s relatively shallow thickness, necessitated a deviation from the standard. Instead of placing injection packers at the conventional 45-degree angle, they were positioned directly into the cracks.

This “in the crack” packer placement minimized the risk of hitting rebars during drilling. Given the wall’s 8-inch thickness, this method ensured the injection foam penetrated effectively, sealing the structure and halting water flow. Drill holes, spaced roughly 12 inches apart, were drilled to a depth of around 4 inches. These holes were then cleaned with warm water to remove any dust, prepping the crack for injection. Subsequently, SealBoss 13-100AL Evolution high-pressure injection packers were installed, recessing the rubber section by about ½-inch.

More information on recommended injection packer placement can be found here.

Product Conditioning

Considering the low ambient temperatures of 34F/1C, the SealBoss 1510 Leak Sealing Foam was conditioned with a higher ratio of  SealBoss 15x Accelerator, approximately 20% by volume, as opposed to the usual 10%.

Injection Process

With the SealBoss P2002 Pump filled with a thorough mix of 1510 Foam and 15x Accelerator, the injection process began. Starting from the lowest packer, the procedure moved vertically upwards. The injection was paused intermittently whenever the catalyzed 1510 foam visibly emerged from the crack. This allowed the foam to cure, ensuring the subsequent hydrophobic resin injection would effectively seal any remaining capillaries within the crack.

The result? Every crack underwent the retaining wall crack injection repair process to specification, successfully halting stopping all water intrusion and seepage.

Jobsite: Bank of America
Scope: Retaining Wall Crack Injection Repair – Active Leaks
Materials Used: SealBoss 1510, SealBoss 15X
Injection Packers: SealBoss 13-100 AL Evolution
Pump: P2002

SealBoss Leak Sealing Foam Injection using angled injection packers

Conclusion

Retaining Wall Crack Injection Repair

The service life of a retaining wall is the estimated time period it can function safely and effectively. By addressing damages early and preventing further deterioration, leak sealing polyurethane can help extend the service life of a retaining wall, ensuring that it can continue to function effectively and safely for a longer period of time.

Injecting leak sealing grout prevents water intrusion, erosion, and deterioration of the retaining wall’s rebar, which helps maintain its structural stability, safety, and integrity. This method provides a practical solution to extend the retaining wall’s life, improve its cosmetic appearance, and ultimately increase its service life.

Retaining Wall Repair Method Comparison

Leak Sealing System
SEALBOO-1510-VIDEO
SB 1510 Foam
sealboss-packers
Injection Packers
Injection Packer Spacing SealBoss Grout
PUR vs Epoxy
Contact Your SealBoss ® Technician

Crack Injection Guideline – 1 2 3 at 45 Degree

Crack Injection Guideline
1 - 2 - 3 at 45 Degree

SealBoss 1 2 3 at 45 Degree Injection Guideline Leak-Seal & Water Stop Crack Injection

Crack Injection Guideline
1 - 2 - 3 at 45 Degree

Injecting Trust - One Crack at a Time

The SealBoss 1-2-3 at 45 Degree Crack Injection Guideline

  • Step 1 – Preparing and Mapping Out Packer Placement

  • Step 2 – Installing the Packers

  • Step 3 – Executing the Injection Process

  • 45-Degree Angle – Recommended Packer Angle / Positioning Guideline

Optimal Techniques and Considerations

The SealBoss 1-2-3 at 45 Degree Injection Guideline highlights the three fundamental steps of the injection process while emphasizing the importance of a standard 45-degree angle for packer placement. Although the 45-degree angle is a widely accepted practice, certain situations may require deviation from this rule, as discussed in this article.

Additionally, it is advised to target each injection port three times during the injection procedure – as a general rule – to ensure adequate density and penetration of the chemical grout within the structure. Injection Packers that persistently absorb product should be injected repeatedly, as many times as needed, to ensure a lasting seal.

Injection Packer Spacing

Mechanical injection packer spacing, also referred to as port spacing, in the context of leak-seal crack injection is contingent upon several site-specific conditions, such as crack width, substrate thickness, water flow, and product properties.

In numerous instances, an 8-inch (20 cm) to 1-foot (30 cm) on-center spacing serves as a suitable initial distance. Hairline cracks necessitate tighter spacing, as the product is less capable of traveling far. Consequently, the tighter the cracks, the closer the required spacing.

Injection Packer Placement

In the majority of cases, injection packers should be arranged in a staggered manner by alternating drill holes to the left and right of the crack while drilling at a 45-degree angle toward the crack, thereby forming a stitch grouting pattern. This method enhances the likelihood of intersecting the crack during drilling and reduces the probability of concrete cracking and spalling during packer installation or the high-pressure injection process. Injection should commence from the bottom and proceed upward.

45 Degree Angle Drilling and Packer Placement

The optimal method for packer placement involves positioning at a 45-degree angle. For structures with a thickness exceeding 6 inches (12-15 cm), SealBoss recommends a 45-degree angle as the most effective strategy for intersecting the crack at the midpoint of the structure. This is accomplished by initiating drilling a few inches to the left or right of the crack at an angled trajectory toward the crack itself, rather than drilling directly into it. This technique enables the requisite “inside-out” product flow for optimal crack penetration.

For instance, in a 10-inch thick concrete wall, one should move approximately 4-5 inches (8-10 cm) away from the crack and drill at a 45-degree angle toward it to attain the desired target. Initiating drilling with a straight entry and subsequently angling the drill at the required angle is beneficial.

Typical drill spacing along the crack’s surface ranges between 6-12 inches (10-20 cm) depending on the crack’s thickness. Hairline cracks necessitate closer spacing than larger cracks, as the material will not travel as far. Stagger drill holes from one side of the crack to the other, intersecting the crack during drilling.

Optimizing Drill Hole Distance from the Crack 

When determining the spacing of drill holes from a crack for chemical grout injection, it is essential to understand the relationship between the hole’s distance from the crack and the depth at which it intersects the crack. Here is a detailed explanation:

  • Depth of Intersection: The greater the distance between the drill hole and the crack, the deeper is its intersection with the crack inside the structure, leading to a deeper point of injection.

  • Considerations for Thicker Structures:  In thicker structures, a deeper injection point is usually favored. Yet, it is essential to factor in the drill bit’s length and reach, as they play a crucial role in determining the optimal distance for the drill hole. Always allow for a margin of error and ad at least a margin of 2 inches to the calculated drill bit reach needed. 

  • Avoiding Dead-End Drill Holes: A drill hole that misses the crack cannot facilitate the injection of the chemical grout into the structure. Such holes are termed “dead-end drill holes” and are ineffective for the purpose of grout injection.

Determining the Required Minimum Length for a Drill Bit

When drilling at a 45-degree angle, we encounter a specific triangle called the 45-45-90 triangle, which follows the principles of the Pythagorean theorem.

In this 45-45-90 triangle, both legs, marked “X”  are of equal length. X is the distance the drill hole is placed away from the crack. Therefore, when drilling at a 45-degree angle, if we assume the crack is perpendicular to the surface, the depth at which the drill hole intersects the crack will be the same as the distance of the drill hole from the crack. To determine the minimum drill depth, or the distance from the drill hole surface to the crack, use the formula:
Distance from crack X √2, which is approximately 1.414.

To simplify and account for variations we use the factor 1.5 to calculate the absolute minimum drill hole depth necessary to intersect the crack. 

For a 5-inch distance from the crack, the calculation would be: 5 × 1.5 = 7.5 inches. Therefore, the drill hole should be at least 7.5 inches deep to guarantee intersection with the crack for injection in near perfect conditions.

For a 6-inch distance from the crack, the calculation would be: 6 × 1.5 = 9 inches. Therefore, the drill hole should be at least 7.5 inches deep to guarantee intersection with the crack for injection in near perfect conditions.

Now add at least 2 inches of drill bit reach to the calculation. It is essential to remember that not all cracks might run perfectly perpendicular to the surface, so always consider the specific conditions of your project.  

In summary, while determining the placing of drill holes, it is important to balance the desired depth of injection with the capabilities and reach of your drilling equipment to ensure effective grout injection.Remember, the effective reach of a drill bit and its actual length differ.

Always ensure your drill bit has the necessary length to effectively intersect the crack!

General Injection Packer Preparation – Drill and Flush


Safety Gear

Consistently wear appropriate protective gear and goggles, adhering to data sheet and SDS instructions.

Cleaning

If required, clean the crack or joint’s face using a wire brush, pressure washing, or similar method. A clean surface facilitates the identification of cracks and problematic areas.

Spacing

Mechanical injection packer spacing, also known as port spacing, is contingent upon various site conditions such as crack depth and width, substrate thickness and state, water flow rate, and the product’s physical and chemical properties.

An 8-inch (20 cm) to 1-foot (30 cm) on-center spacing is suggested for the majority of situations. Hairline cracks necessitate tighter spacing compared to wider cracks. The tighter the cracks, the closer the required spacing, as the product must travel deeply enough into the structure to form a permanent seal.

Determine the spacing, pattern, and depths of the drill holes. Based on the crack’s width, space the packers at a distance of approximately 6-18 inches (10-45 cm). The tighter the cracks, the closer the required spacing. Hairline cracks result in limited water stop and leak-seal grout travel, necessitating tighter packer spacing, while wider cracks permit easier flow and broader packer spacing.

Stagger drill holes from one side of the crack to the other (left/right), thus forming a stitch grouting pattern. This technique increases the chances of intersecting the crack during drilling while decreasing the likelihood of cracking and spalling the concrete during packer installation and the high-pressure injection process.

Typically, injection should begin at the bottom and move upward, pushing the product against gravity and water flow, thereby achieving a higher density in the process.

Exceptions to the 45 Degree Injection Rule – Straight Drilling

As with any rule, the catchy SealBoss 1-2-3 at 45-Degree Rule has its limitations and exceptions. Here are three notable examples:

  • Drilling into Joints
    Drilling into joints, such as concrete tunnel segments, is predominantly performed in a straight manner.

  • Thinner Stuctures
    Concrete structures with a thickness of less than 6 inches may not permit angle drilling, as this can result in cracking and spalling of the concrete.

  • Badly Deteriorated Substrate
    Similar issues can occur in severely deteriorated concrete substrates and in concrete of inferior quality. In such situations, it is recommended to drill and install packers directly into the crack without completely penetrating the structure.

SealBoss offers an extensive range of injection equipment and pumps to accommodate your project. Consult a SealBoss technician for detailed information and assistance. We look forward to helping you with your project.

Drill Dust

When drilling deeper holes, periodically extract your drill bit to remove drilling dust and prevent your drill from binding up.

Rebar

Most concrete structures contain rebar steel reinforcement to provide structural strength. In an ideal, crack-free structure, concrete protects the rebar from corrosion by insulating it from moisture and air while maintaining a high pH environment. However, when cracks form, this shield is compromised, allowing air, environmental gases, and water to cause carbonation, and subsequently corrosion of the rebar, which  forms rust expands to expands its original volume. The expansion of rusted rebar exerts high forces against the concrete, resulting in further deterioration, cracking, and spalling. Chemical grout injection protects rebar and can mitigate these processes.

Rebar often slows down the drilling process. When your drill bit contacts rebar, the sound changes, the quantity of drilling dust may be reduced, and the progression slows down or may even stop.

Some drill bits enable drilling through rebar, although this is generally not recommended and may even be prohibited, as it can weaken the concrete structure. In such cases, relocating the drill hole is the only option. If you repeatedly hit rebar, consider drilling straight into the crack. Dead-end drill holes, the holes that are not used for injection, must be patched and sealed before injection to prevent leakage.

Flushing / Cleaning Drill Holes Prior to Injection

Overview

Drilling debris can thicken the product during injection, resulting in higher injection pressures and reduced penetration in fine cracks. It is best practice to remove concrete dust and debris from the drill holes by flushing with a water hose until clean water is observed. You can use a water hose to flush debris from the hole.

Vacuuming out the dust can also be helpful if flushing is not possible.

Blowing out the debris is another option; however, be aware that dust can be an inhalation hazard, and appropriate gear is mandatory.

Flushing / Cleaning of holes is not necessary if water is actively running from your drill holes.

Drill Hole Water Flushing Detail

Low Pressure Flush

For low-pressure flushing, simple tools like a plastic water squeeze or spray bottle suffice. This method can remove debris from the drill hole and introduce water into the drill hole.

If available on site, a water hose can be used to flush the drill holes.

Using a Dedicated Flushing Water Pump

A dedicated water injection pump is suitable for both low-pressure drill hole flushing with a hose and on-site pressure crack flushing with water through injection packers.

While drill hole flushing serves to remove debris from the hole only, high-pressure water flushing can provide insights into material flow, expected product penetration distance, and introduce moisture to enhance product reactivity.

For such high-pressure applications, a dedicated water flushing pump is essential.

After clearing the drill hole, an injection packer is positioned. The water pump is then linked to channel water under high pressure via the injection packer into the into the crack, flushing it in the process.

If the crack remains unresponsive to taking on water, it might indicate that the hole is not linked to the crack. In such cases, a new drill hole has to be established and retested with water.

While high-pressure flushing is not typically required for most injection projects, it can offer benefits in specific scenarios.

It is imperative not to use the same pump for water injection that you use for dispensing polyurethane resin. Given that polyurethanes are activated by water, even the slightest moisture can result in pump malfunction.

Final Thoughts

Equipment limitations may render flushing infeasible; however, most injections will succeed without additional water introduction, even in seemingly dry crack environments. If the product does not immediately contact water, it will cure over time as natural moisture in the concrete stimulates curing and hardening, potentially at a slower pace.

Additional Injection Packer Installation Recommendations

Mechanical Packer Fundamentals

For optimal performance, packers and drill holes must possess adequate quality to endure injection pressures without leakage or displacement within the crack. Notably, even superior packers may rupture or leak under certain conditions. SealBoss Mechanical Packers, available in various sizes and designs, are recommended for pressure injection. These packers feature a threaded shaft with a rubber base; upon insertion, tightening the shaft compresses the rubber within the drill hole, generating a compression seal. Standard packer diameters range from 1/4 to 3/4 inches, with industry norms between 3/8 and 5/8 inches. In poured concrete substrates, drill holes serve as solid channels directing resin to the crack, enabling the use of shorter packers. In substrates with potential voids, such as block walls, stone, and brick, SealBoss advises employing longer packers to ensure a definite grout delivery channel to the crack being sealed.

Mechanical Packers Installation

To seal against the drill hole, mechanical packers require tightening, which expands the rubber seal. Packers may be pre-tightened by hand to seat the rubber snugly, approximately 1/4 inch (5 mm) inside the drill hole. Correct installation prevents concrete cracking around the drill hole’s exterior. Depending on packer design, using an appropriate ratchet/nut, wrench, or electric driver for tightening is highly recommended. Packers should be securely tightened to withstand injection pressures without over-tightening.

SealBoss Hammer-In Ports

SealBoss Hammer-In Ports are also frequently utilized. These ports are seated using a hammer at moderate force, with an electric driver or hand tool and a suitable socket employed to screw the zerk fitting into the port. Hammer-in ports typically do not achieve the same injection pressures as mechanical packers and should be reserved for applications where maximum injection pressures are not essential.

Packer Connectors

Packers are typically equipped with a quick-connect system, either a zerk type or button head/slide coupler type.

Zerk Type Connector

The zerk type is most prevalent. Applicators must push the coupler over the zerk fitting and maintain alignment with the packer. To disconnect, applicators “break” the connection by pushing the connector sideways.

Button Head / Slide Coupler

The button head type provides a more secure connection. The operator slides the coupler on and off the packer, ensuring a secure, tight connection that is less prone to unintended disconnection and leakage. When executed properly, the applicator does not need to hold the coupler in place, a significant advantage in overhead injection and instances requiring large product volumes through one packer.

SealBoss Packers

SealBoss offers an industry-leading array of injection packers and ports for diverse situations and requirements. Contact a SealBoss representative for packer recommendations tailored to your project.

Injection Products


Before You Start Injection

Before injection, review the product datasheet instructions. Ensure your pump is in fully operational condition and completely devoid of moisture before preparing SealBoss Water Stop and Leak Sealing Products for injection.

It is prudent to flush the pump with SealBoss R70 before using any resin/foam grout.

Injection Procedure

When products are prepared for injection, have a cup available to dispose of some resin to ensure purity. Start the pump at the lowest pressure setting. After connecting your grout injection hose to the secured and tightened packers, initiate the injection process.

Use the shut-off valve at the injection hose’s end whenever the hose is moved, remember that some pumps need to be manually stopped .

Starting from the bottom, securely connect your injection line to the packer and commence with the lowest pressure capable of moving resin into the crack. Generally, injection pressure will decrease as material flows, but pressure may need to be increased as products thicken and move into tighter cracks and fissures.

Maintain a slow injection rate as resin begins to show and flow from the crack. Pausing and restarting the process for a minute may be necessary to allow material reaction and thickening.

Monitor consumption rates and cease injection when consumption equals leakage. A typical observation involves reduced water flow from the crack’s face and/or reacting material exiting the crack’s face. This indicates successful penetration and results.

If the product does not advance along the crack, disconnect and proceed to the next port. Applicators must ensure sufficient material is injected into each crack to achieve optimal product density for a durable seal.

It is recommended to inject three to five packers while observing product flow, travel, and refusal from the crack.

Reinjecting those three to five packers—typically up to three times (1-2-3 at 45 degrees) or until product refusal—is crucial. The crack must be adequately filled with as much product as possible without excessive product loss from the crack. Sufficient material consumption and product density in the injected area must be monitored to achieve a solid and successful repair.

Injection Packers that continue to consume considerable product amounts should be injected a third time or as often as necessary to create a permanent seal.

SealBoss Oakum Soakum Technique

In cases where excessive resin flows out or washes out due to high water flow, resin-soaked SealBoss Oakum can be employed to form a temporary plug, allowing the product time to react, expand, and seal.

Caution: Be prepared for the possibility of product ejection from the structure or around drill holes, as well as packer blowouts. High-pressure injection equipment may cause product to travel further than anticipated, potentially appearing several feet from the injection point. Small cracks may become visible after the injection process.

Quality Injection Job

Injection often necessitates a two-person team, with one individual operating the valve and hose while another manages the pump. Create a dense seal! Inadequate material consumption alone can yield differing results in the same injection application. If the crack is not accepting any product, it may be due to insufficient drilling depth or crack direction on the opposite side. In such cases, drill from the opposite side of the crack and ensure intersection with the crack.

Packer Removal

Once the material has fully cured, packers can be removed by loosening the shaft. Some applicators opt to leave the rubber base in the wall and patch the drill hole, while others remove the entire packer before patching. In certain injection applications, packers may remain in place permanently. This decision is at the discretion of the applicator or owner. A final cleaning of the crack’s face is necessary to remove cured product using a wire brush, pressure washing, or other appropriate methods. The substrate is then prepared for the final finish.

SealBoss R70 Pump Flush for Clean-up

DO NOT CLEAN WITH WATER. If allowed on the job, initially flush all dispensing equipment with a small amount of solvent, such as xylene, to cut the product. Follow this step by generously flushing with SealBoss R70 Pump Flush & Cleaner to protect hoses and lubricate the pump. Avoid using solvents for the final flush, as this can reduce the lifespan of your equipment.

Exception – Equipment for SealBoss 2400 Acrylate is cleaned with water. Consult the data sheet for details.

Inquiries, Comments, or Requests?

Contact us now at 714-662-4445 and request your technical consultant!

Contact Your SealBoss ® Technician

Highway Spall, Crack, and Pothole Repair

Highway Spall, Crack, and Pothole Repair

Highway and Road Repair Polymers

Introduction

In the comprehensive field of highway and road maintenance, addressing the challenges of spalls, cracks, potholes, and birdbaths in a quick and timely fashion is crucial for ensuring the public safety and longevity of road infrastructure. Advanced polymer products have significantly enhanced traditional repair methods, providing solutions that are not only convenient, rapid and extremely durable but also environmentally friendly.

Who hasn’t felt the frustration of constantly scanning the road for large cracks and gouges, only to still end up jolting through an unexpected major pothole?

This article provides an overview into the intricacies of highway damage, the pivotal role of polymer products in contemporary repair techniques, and provides a quick guide on the application of high strength and fast curing polyurethane repair systems by the example of  SealBoss ® Highway and Road repair QuickFix polymer. We show how this innovative product line can be effectively utilized to combat common roadway damages, thus contributing significantly to maintaining safe and efficient transportation networks.

Quick Road Repair Solution

Highway Spall, Crack, and Pothole Repair: Advanced Solutions not only for Highways

The maintenance and repair of highways are critical to ensuring the safety and efficiency of transportation systems.

The same is true however for any road in our communities and cities. 

Spalls, cracks, and potholes are common issues that can lead to significant structural damage and pose risks to drivers. SealBoss® 6060 QuickFix offers a solution how these repairs can be conducted quickly and with permanence. 

Understanding Road Damage

Road and highway damage typically manifests as spalls, cracks, or potholes.

These damages can be caused by a range of factors, including thermal expansion, freeze-thaw cycles, excessive load, and environmental degradation. Addressing these issues promptly is vital to prevent further deterioration and ensure road safety.

The Role of Polymer Products in Highway Repair

Polymer products, particularly polyurethane-based compounds like SealBoss  6060 QuickFix, have emerged as effective solutions for repairing highway damages. These products offer several advantages over traditional repair methods, such as asphalt patching or cementitious repairs.

Key Advantages

  • Extremely Rapid Setting Time: Enables quicker return to service, minimizing traffic disruptions.
  • Deep Penetration: Ensures comprehensive repair by filling even the smallest cracks and voids.
  • Flexibility and Strength: Accommodates some structural movements while providing durable repair.
  • Chemical Resistance: Withstands exposure to various chemicals, fuels, oils, and environmental factors.
  • Ease of Application: Simplifies the repair process, allowing for efficient use even in challenging conditions.

SealBoss 6060 QuickFix: A Closer Look

SealBoss 6060 QuickFix is a two-part  polyurethane product designed for the quick and effective repair of concrete and asphalt surfaces. Its low viscosity allows for deep penetration into fine cracks and pores, ensuring a strong bond, and semi-flexible, long-lasting repair.

 Properties

  • Fast Cure: Moderate traffic loads can resume within 15 minutes at 70°F (21°C).
  • Temperature Versatility: Effective in temperatures ranging from -20°F (-29°C) to 120°F (49°C).
  • Aggregate Compatibility: Can be used with various aggregates for different repair needs.
  • 100% Solids and VOC Free: Environmentally friendly with no harmful emissions.

Application Guidelines

To achieve the best results with SealBoss® 6060 QuickFix, a systematic approach to application is advised.

Surface Preparation

  • Cleaning: Remove all debris, oils, and loose materials. For deep cracks, saw-cutting and thorough dust removal are recommended.
  • Drying: Ensure the repair area is completely dry before application.
  • Roughening: Expose clean, rough concrete or asphalt surfaces for better adhesion.

Mixing and Application

  • Mixing: Equally proportion components A and B is important. Use appropriate application equipment such as the SealBoss JM Pro2 Pump System.
  • Application Method: Apply the mixed product to the bottom of the crack or pothole, working upwards in layers. For deep repairs, alternate between applying the product and adding aggregate until the desired grade is achieved.
  • Curing: Allow the product to set, with traffic resumption times varying based on temperature conditions.
  • Equipment Care: Keep all equipment dry and clean to prevent contamination and ensure effective application.
  • Professional Use: The product is designed for professional use; consulting a SealBoss technician for specific project requirements is advisable.

Conclusion

The use of advanced polymer products like SealBoss® 6060 QuickFix represents a significant leap forward in fast and effective highway repair technology. These materials offer rapid, durable, and environmentally friendly solutions to common roadway damages. By understanding the properties and application techniques of these products, professionals can ensure effective repairs, ultimately contributing to safer and more reliable community roads and highways.

Related Links

Recent Posts

More Posts

Archives
Categories
Scroll to Top