Search

SealBoss News / Blog

Types of Concrete Cracks

Types of Concrete Cracks

A Concrete Crack Overview

Introduction:

Concrete structures can experience a range of cracks due to various causes, including environmental factors, structural issues, and material weaknesses. As a concrete repair professional, understanding these different crack types and how to address them using suitable repair methods—such as polyurethane resin, foam injection, acrylate gel, and epoxy injection—is essential for maintaining the integrity and longevity of concrete structures.

For Concrete Crack Repair Details read our Quick Guide

Types of Concrete Cracks

  • Shrinkage Cracks in Concrete

    Shrinkage cracks occur when hardened concrete loses moisture during the curing process, causing it to contract. These cracks are common in driveways, slabs, and foundation walls. As concrete dries over time, this moisture loss can lead to shrinkage if the concrete is restrained, resulting in cracks. These cracks may be larger and can appear throughout the structure.

    Cause: Uneven moisture loss and restraint in the structure.
    Repair Solution: Polyurethane resin, foam injection, depending on the severity and circumstances, to seal the cracks, prevent moisture ingress, or, in some cases, epoxy injection to regain structural strength.

  • Plastic Shrinkage Cracks in Concrete

    Plastic shrinkage cracks form while the concrete is still in its plastic (unhardened) state. They result from rapid moisture evaporation from the surface, often due to high temperatures, low humidity, or strong winds. These shallow cracks resemble a spiderweb pattern and typically affect newly poured slabs.

    Unlike regular shrinkage cracks, which develop after the concrete has hardened and contracted over time, plastic shrinkage cracks appear within the first few hours after pouring, making them a common issue in newly poured slabs or exposed surfaces. These cracks are typically shallow and widespread across the surface, while regular shrinkage cracks are generally larger and occur throughout hardened concrete structures.

    Cause: Rapid moisture loss from the surface during curing.
    Repair Solution: Typically Polyurethane resin, foam injection, depending on the severity and circumstances, to seal the cracks, prevent moisture ingress. Acrylate gel in some cases.

  • Spalling Concrete Cracks

    Spalling occurs when sections of concrete break away from the surface, exposing the reinforcing steel. This typically results from corrosion within the steel, causing it to expand and exert pressure on the surrounding concrete.

    Cause: Corrosion of embedded reinforcing steel.
    Repair Solution: Epoxy injection to fill and bond the cracks, combined with a surface coating to prevent future corrosion.

  • D-Cracking in Concrete

    Durability cracking, or D-Cracking, results from concrete’s inability to withstand freeze-thaw conditions. It usually manifests as cracks running parallel to joints or linear cracks, often with discoloration around the affected area. D-Cracking is primarily caused by the use of coarse aggregates that trap moisture, which expands during freezing and leads to cracking over time.

    Cause: Coarse aggregates that absorb moisture and expand during freezing.
    Repair Solution: Polyurethane injection, which remains flexible during freeze-thaw cycles.

  • Corrosion Cracks in Concrete

    Corrosion cracks develop due to the rusting of steel reinforcement embedded in concrete. As the steel corrodes, it expands, creating internal pressure that leads to cracking.

    Cause: Rusting of embedded steel.
    Repair Solution: Polyurethane resin, foam injection, depending on the severity and circumstances, to seal the cracks, prevent moisture ingress, or epoxy injection to regain structural strength.

  • Stress Corrosion Cracks in Concrete

    Stress corrosion cracks arise from a combination of tensile stress and a corrosive environment. These cracks are common in marine structures, bridges exposed to de-icing salts, or industrial facilities where chemical exposure is prevalent. This phenomenon often involves the interaction of aggressive chemicals (like chlorides or sulfates) with embedded steel reinforcement, resulting in cracks that may propagate rapidly under continued stress.

    Cause: Interaction of tensile stress with corrosive chemicals.
    Repair Solution: Polyurethane resin, foam injection, depending on the severity and circumstances, to seal the cracks, prevent moisture ingress, or epoxy injection to regain structural strength.

  • Overloading Cracks in Concrete

    Overloading cracks develop when concrete structures bear more weight than they were designed to handle. These cracks usually occur in heavily trafficked areas like driveways or industrial floors where heavy machinery operates.

    Cause: Excessive loads exceeding the design capacity.
    Repair Solution: Most likely high-strength epoxy injection to restore structural integrity.

  • Concrete Expansion Cracks

    Expansion cracks develop when concrete expands due to heat, exerting pressure on the structure. Like most materials, concrete expands when heated, and if it lacks sufficient space to expand, the resulting internal stress can cause cracks. Expansion joints are often installed to provide relief and absorb the stress of expanding concrete.

    Cause:
    Thermal expansion without adequate expansion joints.
    Repair Solution: Polyurethane foam injection, which is flexible enough to accommodate movement.

  • Heaving Cracks in Concrete

    Heaving cracks typically occur in cold climates where freeze-thaw cycles are common. When water within the concrete freezes, it expands considerably, causing the concrete slab to lift or “heave.” As temperatures rise and the ice melts, the slab settles back down, leading to the formation of cracks due to the constant movement. This can be prevented by allowing space for expansion and contraction.

    Cause: Freeze-thaw cycles and temperature changes.
    Repair Solution: Flexible polyurethane foam that can expand and contract with temperature variations.

  • Crazing and Crusting Cracks in Concrete

    Crazing refers to shallow, fine cracks resembling spider webs that appear due to premature drying. Crusting, on the other hand, occurs when the top surface dries faster than the bottom during stamping. While these cracks are not usually structural concerns, they can impact aesthetics and lead to moisture ingress.

    Cause: Uneven drying during the curing or stamping process.
    Repair Solution: Low-viscosity polyurethane foam for sealing and moisture protection.

  • Disintegration Cracks in Concrete

    Disintegration cracks are a result of the gradual breakdown of concrete, starting with surface scaling and leading to large pieces breaking away. Disintegration often results from chemical attacks like carbonation or sulfate exposure and poor construction practices.

  • Cause: Chemical attacks or poor-quality aggregates.
    Repair Solution: High-strength epoxy injection to reinforce the structure and sealant application to prevent further chemical exposure.

     

  • Re-Entrant Corner Cracks in Concrete

    Re-entrant corner cracks occur at areas with abrupt changes in geometry, such as around columns, pipe penetrations,  sharp corners column bases, pipe penetrations, around rounded objects like manholes, and intersections where slab and wall joints meet. As the concrete dries, uneven shrinkage around these regions creates stress concentrations that lead to cracking.

    Cause: Stress concentration around corners or openings.
    Repair Solution: Polyurethane resin, foam injection, depending on the severity and circumstances, to seal the cracks, prevent moisture ingress, or, epoxy injection to regain structural strength.

  • Alkali-Silica Reaction (ASR) Cracks in Concrete

    Alkali-Silica Reaction (ASR), also known as concrete cancer, is a harmful chemical reaction between highly alkaline cement paste and reactive silica in aggregates. This reaction produces a hygroscopic gel that absorbs water, expands, exerts internal pressure, and progressive loss of concrete strength leading to map cracking, also known as pattern cracking or alligator cracking. This distinct crack pattern consists of randomly-oriented, web-like cracks on the surface of concrete elements that move in multiple directions.

    Cause: Reaction between alkaline cement and reactive silica.
    Repair Solution: Polyurethane resin, foam injection, depending on the severity and circumstances, to seal the cracks, prevent moisture ingress, or epoxy injection to regain structural strength.

Choosing the Right Repair Method for many Types of Concrete Cracks


When selecting a repair method for different types of cracks, consider the crack’s cause, size, and impact on the structure:

  • Polyurethane Foam and Resin Injection: Ideal for flexible sealing in areas with moisture issues and minor movements. Works well for sealing finest cracks as well as large voids or areas prone to temperature changes, due to its expanding and flexible properties.
  • Acrylate Gel: Perfect for curtain injection and super fine hairline cracks.
  • Epoxy Injection: Best suited for structural repairs of cracks requiring high strength and load-bearing restoration. 


Conclusion

Concrete cracks are an inevitable challenge for any concrete structure due to the diverse range of factors that can cause them, such as environmental conditions, structural issues, and material weaknesses. Understanding the different types of concrete cracks, such as shrinkage cracks, plastic shrinkage cracks, spalling, D-cracking, and more, is crucial for professionals tasked with maintaining the structural integrity of concrete elements.

By recognizing the root causes of these cracks, repair professionals can determine the most effective methods for restoration. For example, structural cracks due to overloading or stress corrosion may require high-strength epoxy injection to restore the original load-bearing capacity, while cracks resulting from freeze-thaw cycles or moisture ingress are better addressed using flexible polyurethane foam injections. For fine hairline cracks or moisture control in large sections, acrylate gels provide a versatile and efficient solution.

Proper selection of repair materials and techniques not only helps in addressing visible damage but also aids in preventing future deterioration, extending the life of the concrete structure. Each crack type demands careful evaluation to choose the right repair approach, ensuring both safety and durability.

Polymer-based injections, including polyurethane resins, foams, acrylates, and epoxies, offer comprehensive solutions for addressing a wide variety of concrete cracks. They provide the versatility to handle anything from superficial fine cracks to deep structural fissures, making them indispensable for professionals committed to maintaining the integrity of concrete elements.

By integrating these repair methods into their toolkit, professionals can confidently tackle any concrete crack repair challenge, ensuring long-term durability and safety for the structures they manage. As always, consulting experts and selecting high-quality products for each specific application remains key to achieving successful and lasting results.

To learn more about how to approach specific concrete crack repair projects, explore  our Concrete Crack Repair Quick Guide

Contact Your SealBoss ® Technician

Leaking Crack Repair

leaking crack repair

Leaking Crack Repair

Coached by a Top Industry Professional

In the world of construction and maintenance, “leaking crack repair” is a term that frequently emerges, particularly when addressing structures that contain water or are vulnerable to moisture and water intrusion. Addressing these cracks swiftly and efficiently is vital for the structure’s safety and durability. 

Sealing the Future – Preserving the Past
Since 1988

Leaking Crack Repair

Coached by a Top Industry Professional

In the world of construction and maintenance, “leaking crack repair” is a term that frequently emerges, particularly when addressing structures that contain water or are vulnerable to moisture and water intrusion. Addressing these cracks swiftly and efficiently is vital for the structure’s safety and durability. 

Sealing the Future – Preserving the Past
Since 1988

The Need for Crack Injection Training

A prominent general contractor, who usually subcontracts such tasks, expressed the need for immediate crack injection training on a specific jobsite. Their primary aim was to acquire the expertise for smaller projects, allowing them to handle leaking crack repair internally on certain timely projects. This proactive approach not only saves time but also ensures that minor issues can be addressed before they escalate.

leaking-crack-repair-sealboss

A Case Study: Water Treatment Tank Crack Sealed

Scope: New Concrete Tank – Water Test Failure – Asses and Seal

The facilities in question comprised three holding cells, separated by two poured-in-place division walls. During a leak test on the outer two tanks, visible cracks were detected. These cracks, deemed non-structural for repair purposes, showed signs of dampness and minor leaks, emphasizing the need for immediate leaking crack repair. Pressure crack injection with a hydrophobic polyurethane expanding water stop foam utilizing an electric injection pump and mechanical injection packers was specified as the method of restoration.

The Repair Process

Materials Used: SealBoss 1570, SealBoss 15x 
Additional Tools:  SealBoss 13-60S packers, SealBoss 495 Injection Pump, Hammer Drill w/ 12” x ½” bit, PPE

For training purposes, a weeping crack was chosen for repair. This crack, though narrow, spanned about 10 feet in height and meandered across the wall. Given that the newly constructed wall was 14 inches thick, the repair strategy involved guiding the team to drill 5 to 7 inches out from the crack. The drilling was done at a 45-degree angle, aiming back towards the crack, employing the crack stitch method. 

Depth of Intersection: The further the drill hole is from the crack, the deeper it will intersect the crack within the structure. This results in a more profound point of injection.

Considerations for Thicker Structures: A deeper injection point is often preferred in thicker structures. However, the length and reach of the drill bit play a crucial role in determining the optimal distance for the drill hole.

Avoiding Dead-End Drill Holes: A drill hole that misses the crack won’t facilitate the injection of the chemical grout into the structure. Such holes are termed “dead-end drill holes” and are ineffective for the purpose of grout injection.

In summary, while determining the spacing of drill holes, it is vital to balance the desired depth of injection with the capabilities of your drilling equipment to ensure effective grout injection.

leaking crack repair injection packer drilling

To ensure precision, the placement was set parallel to the fissure. A 0.5-inch masonry bit, attached to a hammer drill, was used for the drilling process. Once the clean, crack-intersecting holes were established, SealBoss 13-60S heavy duty steel injection packers were installed.

The repair commenced from the bottom, progressing upwards. The SealBoss 495 injection pump, paired with the SealBoss 1570 NSF/ANSI/CAN 61 drinking water contact certified chemical grout, was used for the leaking crack repair. As the repair proceeded, water and material were observed exiting the substrate. This was a positive sign, indicating effective penetration and successful stopping of the water penetration and sealing of the crack.

Final Thoughts

Leaking crack repair is an essential aspect of maintaining the structural integrity of buildings and facilities. With the right knowledge, tools, and materials, such as those provided by SealBoss Corp., even the most challenging cracks can be effectively addressed. Whether you’re a contractor looking to expand your skill set or a facility manager aiming to maintain your structures, understanding the nuances of leaking crack repair is invaluable. Our SealBoss Water Stop Specialists are always ready to assist you.

Contact Your SealBoss ® Technician

Crack Injection Tools & Accessories

Crack Injection Tools & Accessories

Crack Injection Tools & Accessories: Your Ultimate Source for Professional-Grade Solutions

As a leading supplier of concrete crack repair solutions, we are excited to offer an extensive selection of crack injection tools and accessories designed to meet the needs of both low and high-pressure injection systems.

Our product line is engineered to support a wide range of project requirements, ensuring that whether you’re working on large-scale commercial projects or smaller residential repairs, you have access to the tools you need for success.

From experienced contractors to first-time repair professionals, our comprehensive range of high-quality components ensures that your crack repair toolkit is fully stocked, enabling you to execute foundation crack repairs with confidence and precision

Crack Injection Tools & Accessories

Why Choose Our Crack Injection Tools & Accessories?

  • Versatile Solutions: We cater to both low and high-pressure injection systems, providing flexibility for a variety of applications, from minor cracks to significant structural repairs.

  • High-Quality Components: Every item in our product line is crafted with durability and efficiency in mind, giving you the tools you need for successful, long-lasting repairs.

  • Suitable for All Experience Levels: Whether you’re a seasoned professional or tackling crack injection for the first time, our tools are designed for ease of use without compromising performance.

Elevate your crack repair work with our Crack Injection Tools & Accessories – because successful foundation restoration starts with having the right tools.

Crack Injection Tools & Accessories – Dependable Solutions for Every Project

At the core of our offering is a commitment to providing reliable and effective crack injection tools and accessories that ensure your repairs stand the test of time. We recognize that no two projects are the same, which is why our range has been carefully curated to meet the diverse requirements of low and high-pressure injection systems.

Regardless of your level of experience, our tools are engineered to help you achieve professional results. From injection ports to specialized pumps and accessories, each item is designed to make the process smoother, more precise, and ultimately more successful.

Unmatched Technical Support

In addition to offering premium products, we are dedicated to ensuring you have the support you need to use them effectively. Our expert technical support team is available to provide guidance, answer any questions, and help you make informed purchasing decisions. Whether you need advice on selecting the right tools or troubleshooting during the repair process, we are here to ensure your foundation restoration is completed with the utmost precision and efficiency.

Your success is our success, and we stand behind every product we offer with unparalleled after-sales support. Trust us to help you achieve flawless crack repairs, every time.

Start your foundation restoration journey with our Crack Injection Tools & Accessories — because lasting success begins with the right tools.

Contact Your SealBoss ® Technician

Crack Injection Pressure

Crack Injection Pressure

Polymer Crack Injection

Crack Injection Pressure

Understanding Injection Pressures: A Guide to Polyurethane, Acrylate, and Epoxy Repairs

Introduction

Mastering injection pressures is essential for successful concrete crack repair, influenced by crack type, repair material, and environmental factors. Understanding the dynamics of pressure during injection, particularly as it relates to foam expansion and viscosity changes in resins and gels, is essential for professionals aiming to prevent complications such as spalling or insufficient penetration, and ensure a high-quality, lasting repair.

This guide compares the injection pressures required for polyurethane, acrylate, and epoxy materials, providing insights into optimizing repair strategies for improved outcomes

Assessing Injection Pressures and Product Flow:

Comparing Polyurethane, Acrylate, and Epoxy Crack Injection Characteristics

Within the realm of concrete crack injection, the pressures required for a successful repair can significantly vary. This variance is influenced by the specific conditions of the injection environment and the particular products utilized.

The pressures needed to advance the product are governed by the product’s viscosity and the extent of the crack, specifically the resistance the injected substrate presents to the product’s progress.

Generally, it can be stated that narrower, hairline cracks require increased pressure for successful injection, similar to products with greater viscosity.

POLYURETHANE FOAM CRACK INJECTION PRESSURES

In injection jobs involving polyurethane foam and hairline cracks, the necessary injection pressure often leans towards the high side and may exceed 1000 psi under certain circumstances.

During the injection process, when the foam begins to expand upon contact with water, the product’s viscosity increases sharply. This surge can cause back pressure to rise significantly, potentially reaching extreme levels of 1500-2000 psi or higher, depending on the equipment used.

Excessive injection pressure can lead to concrete spalling, a serious risk that may cause additional complications. This underscores the importance of careful handling and precise pressure management throughout the injection process to prevent damage and ensure a successful outcome.

In these instances, it is strongly recommended to avoid setting the injection packers too shallowly. Instead, the use of longer injection packers, capable of reaching more deeply into the drill hole, is advisable.

This strategy serves to minimize the risks associated with high-pressure injection, contributing to a safer and more effective repair process.

In particularly challenging scenarios, it could be a beneficial strategy to think about transitioning to an ultra-low viscosity polyurethane resin, such as SealBoss 1403 SLV – which boasts a viscosity of a mere 70 cps – or consider an Acrylate Polymer.

ACRYLATE POLYMER INJECTION PRESSURES

Alternatively, you might consider an acrylate-based product, like SealBoss 2400 Acrylate, recognized for its viscosity that nearly parallels the low levels observed in water.

These super low viscosity polymers possess the remarkable ability to infiltrate even the finest of hairline cracks with considerable depth. Consequently, they facilitate the formation of a dependable and flexible seal, while reducing the risk of spalling during the process. 

Compared to polyurethane injection foams, the exceptionally low viscosity of acrylate gels can provide enhanced penetration capabilities in very tight spaces at lower pressures.

The use of these advanced products can greatly enhance the effectiveness and reliability of concrete repair interventions.

Acrylate Injection Gel is also used for curtain and bladder injection which is mostly performed at lower injection pressures.

EPOXY CRACK INJECTION PRESSURES

Generally, the pressures involved in epoxy injection can be regarded as significantly lower when compared to those utilized in polyurethane crack injection.

SealBoss Epoxy resins are available in both low and super low viscosity grades. These resins maintain a stable viscosity during the injection process and thus allowing an even flow through the crack.

The process of epoxy injection is executed via ports installed on the surface, which are secured onto the crack with an anchoring epoxy paste. This paste also serves to completely seal the crack’s surface. Adhesively attached epoxy ports, along with the epoxy surface seal, are not built to withstand exceptionally high injection pressures.

As long as a consistent product flow is maintained during injection, most epoxy crack injection tasks can be successfully performed at very low injection pressures. These pressures typically do not exceed a few hundred psi at most.

PRO TIP

As you embark on a concrete crack injection job, it’s recommended to start with an exploratory or mock-up injection phase.

During this phase, identify a distinctly outlined, potentially actively leaking crack that extends deep into the structure for the first injection. This initial phase enables the precise estimation of the necessary quantity of material and the required injection pressures.

It is advised to keep close track of the material consumption and make measurements of the injection pressures needed to push product deep into the structure. Monitoring these aspects assists in developing a clearer understanding of the project’s conditions and planning the subsequent injection process more effectively.

Contact Your SealBoss ® Technician

Restoration Waterproofing

Restoration - Waterproofing

Restoration – Waterproofing with Injection Resins, Gels, and Foams

Restoration waterproofing projects represent a mix of various complex tasks, each with its unique set of challenges. The first crucial step is identifying the root source of the water infiltration, which at times can be a difficult process.

Diagnosis

A correct leak diagnosis might necessitate various steps, such as performing visual inspections of the inside and outside of the structure, examining the surrounding conditions, conducting flood tests, utilizing dye testing, creating mock-ups, and removing paints and finishes. 

Setting Defined Objectives

Before starting a restoration waterproofing project, it is crucial to clarify the goals and expectations for every party involved.

It goes without saying that the primary aim of such a venture typically revolves around halting water intrusion. There are many techniques and products that can be used for this, such as polyurethane injection foams, gels, and resins, as well as acrylate injection gels and even epoxy resins in some circumstances. These methodologies come with their individual costs, levels of site disruption, and project timetables. It is essential that all of these elements are thoroughly considered and presented to the end customer, facilitating an informed decision-making process.

Understanding Water Movement and Migration

It is indispensable to understand some key concepts related to water migration and movement around and within soil,  structures, voids, joints, and cracks.

Water is Not Always Visible

The obvious appearance of a leak in a specific location does not definitively imply that other areas are devoid of water ingress. Water invariably seeks the path of least resistance, typically navigating towards any openings, fissures, and low spots. Upon remediation of these lower areas, the water may find its way to other compromised zones.

Leak Detection Techniques

The leak detection process is further complicated if the repairs are undertaken during a period of relative dryness. Under such circumstances, leak migration might not become evident until the advent of the next rain event. For more controlled testing, it may be advisable to deliberately flood the surrounding area, creating conditions that could induce a leak at the time of inspection and repair. Conducting flood testing before, during, or after the repair work can contribute significantly towards pinpointing any areas where the leak may have migrated. Executing waterproofing repairs amidst active leaking can effectively help identify and repair leak migration issues.  

Restoration Waterproofing Products 

Polymer injection foams, resins and gels serve as viable solutions in restoration waterproofing. Their superior qualities make them ideal for sealing leaks, even in wet environments. Polyurethane foams are adept at sealing large leakages, both in volume and speed, expanding upon contact with water to block infiltrations effectively. On the other hand, super low viscosity resins and gels ensure a long-lasting solution for smaller, more intricate leaks, seeping into hairline cracks and curing to provide a waterproof seal. Implementing curtain injection behind a structure can effectively generate a waterproof, membrane-like barrier, thus sealing wet and damp spots within concrete and masonry structures.

At times, epoxy resins may be required to restore structural integrity, even in wet or damp conditions. For an in-depth comparison between epoxy and polyurethane injection, please refer to the detailed information provided here.

In Conclusion

Remedial restoration waterproofing is often an iterative, exploratory process that might necessitate adjustments along the way. Setting realistic expectations, keeping open lines of communication among all involved parties, and maintaining a keen eye for detail are important to the efficient and successful execution of a waterproofing process.

A well-executed waterproofing restoration can add years to the lifespan of a structure, safeguarding it against potential damage and preserving its aesthetic and functional value.

Leak Sealing Foam Grout
Water Stop Foam Grout
Hydrophobic Injection Foam Grout

Our #1 Selling Polyurethane Injection Foam
Water Cut-Off Injection Grout
1510 PU Foam & Oakum Pipe Plug Kit

Leak Sealing Foam Grout
Water Stop Foam Grout
Hydrophobic Injection Foam

Flexible Polyurethane Injection Foam
Flexible Foam, Water-Activated chemical grout. 

Leak Sealing Foam Grout
Water Stop Foam Grout
Hydrophobic Injection Foam

Super Low Viscosity Polyurethane Injection Foam,
Water-Activated chemical grout. Drinking Water

Accelerator for SealBoss Single Component Injection Foams

Accelerator For 1510/1570 PU Injection Foam. Adjust foam gel-time and foam expansion from low foaming to high foaming depending application.

Leak Sealing Injection Resin
Super Low Viscosity PUR Injection Resin

Two Component Flexible Resin
The solution for wet and dry surfaces and moving cracks. Extremely low viscosity for superior penetration in hairline crack injection.

Leak Sealing Injection Gel
Hydrophilic Injection Foam Gel
Hydrophilic Gel

Versatile Hydrophilic Polyurethane Foam-Gel
Water activated single component hydrophilic Polyurethane grout. 

Leak Stop
Leak Sealing
Acrylate Gel
Acrylic Gel

Poly Acrylate Gel
Hydrophilic poly-acrylate gel / acryclic gel for soil stabilization, curtain-injection, infusion bladder injection into structures and to seal degrading masonry grout.

Contact Your SealBoss ® Technician

How to Fix Foundation Cracks

Popular Mechanics – Pop Mech Pro, Publishes Article with Detailed Pictures about “How to Fix Foundation Cracks”, using the SealBoss Crack Repair Method with Specialized Leak-Sealant and Injection Packers:

Concrete cracks have been an issue since the beginning of concrete construction three millennia ago. The article explains that modern concrete lacks self-healing properties, which causes cracks to worsen over time and impacts both homeowners and engineers.

Popular Mechanics’ century-old building in Easton, Pennsylvania, suffered from cracked concrete until local contractor repaired it. They used a specialized leak-sealant from SealBoss and ordinary tools to fill and seal the cracks, preventing further water entry and degradation.

The article discusses the SealBoss 1510 Water Stop Foam solution for fixing concrete cracks, a common issue affecting many structures from homes to bridges.

The article highlights how modern concrete deteriorates over time due to water seepage through cracks.

  • “After the water-stopping material has hardened into a plastic foam, the contractors removed it from the wall and floor with putty knives and scrapers. They removed the packer with a socket and socket wrench, then filled the remaining hole with mortar. With that, the job is complete.” 

     Popular Mechanics, Roy Berendsohn

The solution presented in this article and involves a straightforward repair method demonstrated by the contractor, using ordinary tools and SealBoss 1510 specialized leak-sealant from SealBoss. The process includes drilling holes along the crack, inserting injection ports, and injecting an expanding liquid polyurethane resin mixed with an accelerator to seal the crack effectively.

This method has proven successful in preventing further leaks through the foundation of the century-old building occupied by Popular Mechanics in Easton, Pennsylvania, showcasing its effectiveness in concrete crack repair.

  • “We were amazed at the simplicity of the process and the good results it produced–we haven’t seen any further leaks through the foundation since the two men completed their work.”

    Popular Mechanics, Roy Berendsohn

References

 Link to the article — “How to Fix Foundation Cracks”
Popular Mechanics, Pop Mech Pro, 1/24/2024, by Roy Berendsohn

SealBoss Crack Repair Kits

SEALBOSS-1510
SealBoss1510
SEALBOSS-1570-LV-SMALL
SealBoss1570
SEALBOSS-1570-LV-SMALL
SealBoss 1570LV
SEALBOSS-FLEXGEL-SMALL
SealBoss FlexGel
SEALBISS-15X-SMALL
SealBoss 15x
SealBoss 2400
Injection Packers
SealBoss Injection Packers
Contact Your SealBoss ® Technician

Parking Garage Crack Injection | Leak Sealing Repair

Parking Garage Crack Injection

Structural and Leak Sealing Repairs

Introduction:

For effective and long term parking garage crack injection repair, the use of specific injection products for waterproofing and structural crack repair is pivotal.

For leak sealing, polyurethane foam resins, hydrophilic gels, and acrylate / acrylic gels are commonly employed. These resins, when injected, either react with water to form a foam that expands or create a gel product respectively, filling voids and sealing against further water ingress. This method not only prevents water penetration but also adds to the structural integrity of the parking facility.

On the other hand, for structural strength crack injection, epoxy resins are predominantly used. These resins are known for their high-strength bonding capabilities, effectively sealing cracks and restoring the concrete’s original strength. Epoxy resins are particularly advantageous in load bearing environments, providing strength and restoring the concrete’s structural integrity.

Both types of injection product groups are crucial in extending the lifespan of parking structures, ensuring they remain safe and functional for daily use.

Parking Garage Crack Injection Technology

For over three decades, SealBoss Crack Injection Systems have been at the forefront of providing effective solutions for structural repairs and sealing leaks in cracks and joints within parking garage structures. These systems have proven successful in not only preventing water ingress but also in preserving the integrity and functionality of parking facilities.

Parking Garage Crack Injection Leak Sealing Repair

Parking Garage Crack Injection Leak-Seal RepairInjection of concrete parking structure in St. Louis, Missouri using the SealBoss Water Stop System

How to Seal Leaks in Voids, Cracks, Joints, and Seal Around Beams

In a technical support role for a leading infrastructure repair company, the job often involves providing assistance to clients on a wide array of repair projects. These projects range across a diverse spectrum, including concrete repair, waterproofing, slab lifting, soil stabilization, and permeation grouting.

Recently, there was an instance of providing consultation to a contractor. The focus was on addressing water leaks by injecting materials into voids, cracks, joints, and beam pockets that had previously been treated with mastic grout.

The area where the leaks persisted were directly below the sidewalk where the concrete meets the asphalt driveway.  After inspecting the above ground conditions closely it was determined that the main source of the water intrusion were gutter downspouts. There were no drains installed to manage the directional flow of rainwater away from the structure.

Now that the source and path of water ingression had been established, polyurethane pressure injection of the affected areas was confirmed to be the correct solution to seal the leaks. 

The first areas that needed to be sealed were leaking beam pockets which had been previously filled with a mastic patch grout. Over a 30 year period there had been multiple previous attempts by various contractors to repair the leaking areas. No records were available on the various works that had been performed.

It was decided to inject through the wall to the back side of the structure to cut off any water before it could find its way into the beam pockets. This method combines void fill and permeation grouting as product is injected beyond the structure into a space that in this instance is confined by concrete / steel, asphalt and dirt. As the foam disperses under pressure injection and during expansion, it partially migrates / permeates also into the dirt further enhancing the ability to seal the void.

Using two strategically placed SealBoss Evolution 13-100 AL packers, the contractor injected 1510 Water Stop Foam, catalyzed with 10% 15x Accelerator,  at several intervals, permitting the resin to expand to a dense foam creating a seal and protecting the beam pocket from any water intrusion from behind the wall. 

The injection process was monitored from the inside and outside and the contractor stopped injection once air bubbles and water were observed coming up through the asphalt driveway. Expanding foam displaced water in the affected area. Injection was continued at a slow rate until water displacement  finished and increasing resistance indicated full penetration.

Next, the contractor injected all visible and leaking cracks some of which at one point had been injected with a structural / rigid epoxy which had failed. Reason of epoxy failure was determined as either lack of bond due to actively leaking cracks during epoxy injection and/or failure due to crack movement such as contraction and expansion. Polyurethane injection is the preferred method to address actively leaking and water bearing cracks, especially in areas where structural repairs are not necessary. The two foot thick wall was injected with 1510 leak-seal foam in intervals till the crack showed refusal of the resin.

Epoxy Versus Polyurethane Comparison – click here.

On-site support from knowledgeable and experienced technical reps is available upon request, I personally cover from North Dakota and Minnesota down through Texas.  Call us with any questions, we look forward to helping you find a solution.

Materials and Tools Used

Related Articles

Structural Parking Garage Repairs with High Strength Epoxy Resins

Learn More

Please don’t hesitate to call us at 714-662-4445 with any questions, or request to be contacted here, we look forward to helping you find a solution. On-site support from knowledgeable and experienced technical reps is available upon request.

Check out our Leak Sealing Repair Kits.

  • Polyurethane Grout Injection Pump
  • Polyurethane Foam Injection Pump
  • Easy To Use
  • Easy To Cean
  • Easy To Maintain
  • Modular, Compact &
  • Sturdy Design
  • Single Component
  • Electric Drill Operated
  • Heavy Duty For Daily Use
  • Pressure Gauge, Hose Set, Hopper Included
  • Recommended For Beginners & Injection Pros
  • > 5000 PSI Injection Pressure Possible
Contact Your SealBoss ® Technician

Retaining Wall Repair

Retaining Wall Repair

Injection Methods Compared
retaining wall repair

Understanding Retaining Wall Repair:

Polyurethane vs. Epoxy Injection Methods

Retaining walls play a pivotal role in infrastructure and landscape, offering both functional support and aesthetic appeal. These structures, while robust, are susceptible to environmental factors and age related weakening that can lead to cracks, spalls, water leakage, or other forms of structural damage.

Addressing these issues promptly and effectively is crucial to ensure the longevity and safety of the wall. In the realm of deep penetrating, effective sealing and high strength structural retaining wall repairs, two methods have emerged as frontrunners: Polyurethane and Epoxy injection.

This overview explores the intricacies of both methods, comparing their advantages, applications, and effectiveness to guide you in making an informed decision for your retaining wall repair needs.

SEALBOSS PU ICON

Retaining Wall Repair
with Leak Sealing Polyurethane Water Stop Foam Injection

Retaining walls serve as crucial components in construction projects, especially when dealing with slopes or elevated terrains. Their primary function is to combat soil erosion and bolster the stability of structures by resisting the pressures of soil and water. Yet, like all structures, retaining walls are prone to wear and tear, often manifesting as water leakage and subsequent erosion.

Enter polyurethane injection, a game-changer in the realm of retaining wall repairs. This method stands out not only for its efficacy but also for its cost-efficiency. Unlike traditional repair methods that might involve extensive excavation, the use of heavy machinery, or prolonged construction periods, polyurethane injection offers a swift and minimal-disruption solution. The essence of this method lies in the foam grout injected, which forms a resilient waterproof barrier, crucial for walls constantly exposed to moisture and hydrostatic pressure.

At its core, polyurethane injection foam is engineered to expand upon water contact. Typically, this foam is introduced into cracks or voids within a structure. Upon encountering water, a chemical reaction is triggered, causing the foam to swell and occupy the space. This unique expanding property is invaluable for tasks like leak sealing, ensuring that the foam aptly fills gaps and halts further water penetration.

The combination of low viscosity, fast expansion and curing, flexibility, good chemical resistance and adhesion, make polyurethane injection foam grout an effective choice for leak seal and water stop injection applications.

Here are some advantages of using PUR foam for stopping water migration through retaining walls:

  • Cost-effective — Polyurethane injection is a cost-effective solution for repairing a leaking retaining wall. It requires less labor, time, and materials compared to traditional methods of repair, such as excavation and replacement
  • Water Stop Leak Sealing and Waterproofing — The injected polyurethane resin expands on contact with moisture and creates a waterproof compression seal that prevents further water infiltration into the retaining wall
  • Minimal-Invasive — Polyurethane injection requires minimal disruption to the surrounding area, making it a convenient solution for homeowners and business owners. It does not require excavation, heavy machinery, or lengthy construction timelines
  • Quick — Polyurethane injection can be completed quickly compared to traditional methods, minimizing the time that the retaining wall is out of commission and minimizing disruptions to daily activities
  • Durable — The injected polyurethane resin creates a strong and flexible bond with the concrete surface, making it a durable and long-lasting solution for sealing a leaking retaining wall

Summary

Polyurethane injection is a cost-effective, waterproof, minimal-invasive, quick, durable, versatile, and eco-friendly solution for sealing a leaking retaining wall. If you are facing a leaking retaining wall, consider using this method for an efficient and effective repair solution.

Leak Sealing System
SEALBOO-1510-VIDEO
SB 1510 Foam
sealboss-packers
Injection Packers
Injection Packer Spacing SealBoss Grout
PUR vs Epoxy
SEALBOSS EPOXY ICON

Retaining Wall Repair
with Epoxy Resin Injection For Structural Strength

Retaining walls play an indispensable role in both landscape and infrastructure, acting as bulwarks against soil erosion and providing essential structural support. Yet, like all structures, they are vulnerable to the elements, facing challenges like natural degradation, water-induced damage, and the relentless pressure from the soil. Over time, these factors can result in cracks, voids, and other structural concerns. Left unaddressed, these issues can jeopardize the wall’s stability and safety. This is where epoxy resin injection comes into play, offering a robust solution to restore and reinforce a retaining wall’s strength.

Here is a closer look at the benefits of using epoxy resin injection for retaining wall reinforcement:

  • Structural Strength Repair — Retaining walls can lose their structural strength due to natural wear and tear, crack development, water damage, and soil pressure. Epoxy resin injection can fill and reinforce the damaged areas, restoring the retaining wall’s strength and stability. Epoxy resin, known for its high compressive and tensile strength, can fortify damaged areas, resisting both compressive and tensile forces. Its ability to prevent crack propagation and bear significant pressures and loads makes it a prime choice for restoring walls facing soil and water pressures

  • Durability — Epoxy resin injection is a durable solution for retaining wall repair. Epoxy resin is resistant to water, many chemicals, and typical ambient heat. It also resists wear and tear, making it a long-lasting solution that can withstand the test of time

  • Cost-effectiveness — Opting for epoxy resin injection can be a financially savvy decision. When compared to the steep costs associated with wall replacement—which often involves excavation, demolition, and rebuilding—epoxy injection emerges as a cost-effective alternative

  • Minimal-Invasive — Epoxy resin injection is a minimal-invasive solution for repairing retaining walls. It does not require excavation, heavy machinery, or lengthy construction timelines, minimizing the disturbance to the surrounding area

  • Quick — Time is of the essence in repair projects. Epoxy injection offers a faster turnaround than many traditional methods, ensuring the retaining wall is swiftly restored to functionality, with minimal disruption to daily routines

Summary

Epoxy resin injection is a reliable and efficient solution for structural retaining wall repair, offering a range of advantages such as durability, high compressive and tensile strength, cost-effectiveness, and minimal-invasiveness. 

For any structural repair project, it is highly recommended to seek guidance from a professional engineer to assess the suitability of epoxy injection. Additionally, it is important to hire a skilled and experienced epoxy injection contractor who can perform the repair in accordance with the specifications. This ensures that the repair is conducted safely and effectively, and that the structure is restored to its optimal condition. It is crucial to prioritize safety and quality when it comes to structural repairs — expert advice and hiring competent professionals can help to achieve these goals.

Tenacious Crack-Sealing Epoxy Grout SealBoss 4040 LV
Epoxy System
Tenacious Crack-Sealing Epoxy Grout
SB 4040 Epoxy
epoxy port-SURFACE-PORT-SEALBOSS
SB Epoxy Ports
EPOXY-CRACK-INJECTION-SEALBOSS
Epoxy vs PUR

Conclusion

Retaining Wall Repair – Polyurethane or Epoxy Injection

  • Polyurethane foam injection can be applied effectively in a wet environment where active water leaks are present. When the foam is injected, it expands and creates a water-resistant barrier that forms a permanent, flexible or semi-flexible seal upon contact with water. In most cases, there is no need to surface seal cracks before injecting the foam. Injection packers can be installed in wet environments and injection is not impacted by active water flow. While water-bearing cracks can lead to structure deterioration and erosion over time, they often do not compromise the structural integrity of the building if recognized early and sealed promptly

  • While structural epoxy injection can effectively restore a retaining wall’s strength and integrity, it is most effective in a dry environment. Epoxy is not well-suited to stop active water leaks. The injection area requires more preparation work, and it is recommended to surface seal cracks before injecting the epoxy. Surface ports do not adhere well in very wet environments. This repair method is more time-consuming and labor-intensive compared to polyurethane foam injection, and it can be more expensive

In summary, both polyurethane foam injection and structural epoxy injection are effective repair methods for retaining walls. Polyurethane foam injection is a highly effective method for preventing water infiltration, stopping active water flow, and efficiently and permanently sealing cracks. Structural epoxy injection is most suitable for application in environments that are not actively leaking and require additional support for significant structural damage in the wall.

Ultimately, the choice of injection repair method will depend on the specific project requirements.

It is always recommended to consult with a qualified professional to determine the best approach for your retaining wall repair needs.

Contact Your SealBoss ® Technician

Retaining Wall Crack Injection Repair

Retaining Wall Crack Injection Repair

Using Leak Sealing Foam

Retaining Wall Crack Injection Repair using Leak Sealing Foam offers a swift and dependable solution to address cracks responsible for water infiltration and subsequent erosion. Here is a quick guide to this repair process:

1. Site Preparation
Begin by ensuring the site is ready for the repair. Clear away any debris, dirt, and loose materials to provide a clean working surface.

2. Crack Assessment
Identify and evaluate the cracks in terms of their depth and length. While visible cracks are obvious targets, it’s crucial to be vigilant about potential hidden cracks that might escape a cursory glance. Such concealed cracks might necessitate a more thorough examination.

3. Drilling Injection Point Holes
Once the cracks are mapped out, drill holes into the retaining wall. These should be spaced roughly 12 inches apart, running along the entirety of each crack.

4. Packer Installation
Insert the injection packers into the freshly drilled holes, ensuring they’re firmly anchored. These packers act as conduits for the polyurethane foam during the injection phase.

5. Foam Injection
With the packers in place, it is time to inject the prepared leak sealing foam. Utilizing the appropriate equipment, start the injection at the lowest point, working your way up. Continue this process until the foam either refuses to enter further or you’ve covered the entire crack.

6. Curing and Final Touches
Post-injection, allow the polyurethane foam ample time to cure, adhering to the manufacturer’s guidelines. Once cured, remove the packers and seal the holes using a compatible sealant.

In summary, the use of leak sealing foam for Retaining Wall Crack Injection Repair is a tried-and-true method, ensuring cracks are effectively sealed, preventing any future water ingress.

Retaining Wall Crack Injection Repair Guide

Retaining Wall Crack Injection Repair with SealBoss 1510 Leak Sealing Foam

When it comes to the restoration of older commercial buildings, retaining wall crack injection repair emerges as a crucial method for preserving architectural integrity. A recent case involved a 50-year-old commercial structure that required  rehabilitation, particularly for its below-grade retaining wall. This wall, adjacent to a staircase, displayed multiple through cracks and evident efflorescence.

Choosing the Right Repair Product

Given the challenges posed by groundwater seepage, especially after heavy rainfall, SealBoss 1510 Leak Sealing Foam was chosen for the job. This product was injected at high pressure to address the cracks before the concrete wall underwent refacing.

Insightful Inspection

A detailed inspection revealed that the main, larger cracks were accompanied by smaller, branching cracks. The retaining wall, showing clear signs of honeycombing and pitting, was constructed with an 8-inch thickness. However, the design and layout of the rebar remained unknown.

Strategic Packer Placement

The unique challenges of this retaining wall crack injection repair, such as uncertain rebar spacing and the wall’s relatively shallow thickness, necessitated a deviation from the standard. Instead of placing injection packers at the conventional 45-degree angle, they were positioned directly into the cracks.

This “in the crack” packer placement minimized the risk of hitting rebars during drilling. Given the wall’s 8-inch thickness, this method ensured the injection foam penetrated effectively, sealing the structure and halting water flow. Drill holes, spaced roughly 12 inches apart, were drilled to a depth of around 4 inches. These holes were then cleaned with warm water to remove any dust, prepping the crack for injection. Subsequently, SealBoss 13-100AL Evolution high-pressure injection packers were installed, recessing the rubber section by about ½-inch.

More information on recommended injection packer placement can be found here.

Product Conditioning

Considering the low ambient temperatures of 34F/1C, the SealBoss 1510 Leak Sealing Foam was conditioned with a higher ratio of  SealBoss 15x Accelerator, approximately 20% by volume, as opposed to the usual 10%.

Injection Process

With the SealBoss P2002 Pump filled with a thorough mix of 1510 Foam and 15x Accelerator, the injection process began. Starting from the lowest packer, the procedure moved vertically upwards. The injection was paused intermittently whenever the catalyzed 1510 foam visibly emerged from the crack. This allowed the foam to cure, ensuring the subsequent hydrophobic resin injection would effectively seal any remaining capillaries within the crack.

The result? Every crack underwent the retaining wall crack injection repair process to specification, successfully halting stopping all water intrusion and seepage.

Jobsite: Bank of America
Scope: Retaining Wall Crack Injection Repair – Active Leaks
Materials Used: SealBoss 1510, SealBoss 15X
Injection Packers: SealBoss 13-100 AL Evolution
Pump: P2002

SealBoss Leak Sealing Foam Injection using angled injection packers

Conclusion

Retaining Wall Crack Injection Repair

The service life of a retaining wall is the estimated time period it can function safely and effectively. By addressing damages early and preventing further deterioration, leak sealing polyurethane can help extend the service life of a retaining wall, ensuring that it can continue to function effectively and safely for a longer period of time.

Injecting leak sealing grout prevents water intrusion, erosion, and deterioration of the retaining wall’s rebar, which helps maintain its structural stability, safety, and integrity. This method provides a practical solution to extend the retaining wall’s life, improve its cosmetic appearance, and ultimately increase its service life.

Retaining Wall Repair Method Comparison

Leak Sealing System
SEALBOO-1510-VIDEO
SB 1510 Foam
sealboss-packers
Injection Packers
Injection Packer Spacing SealBoss Grout
PUR vs Epoxy
Contact Your SealBoss ® Technician

Highway Spall, Crack, and Pothole Repair

Highway Spall, Crack, and Pothole Repair

Highway and Road Repair Polymers

Introduction

In the comprehensive field of highway and road maintenance, addressing the challenges of spalls, cracks, potholes, and birdbaths in a quick and timely fashion is crucial for ensuring the public safety and longevity of road infrastructure. Advanced polymer products have significantly enhanced traditional repair methods, providing solutions that are not only convenient, rapid and extremely durable but also environmentally friendly.

Who hasn’t felt the frustration of constantly scanning the road for large cracks and gouges, only to still end up jolting through an unexpected major pothole?

This article provides an overview into the intricacies of highway damage, the pivotal role of polymer products in contemporary repair techniques, and provides a quick guide on the application of high strength and fast curing polyurethane repair systems by the example of  SealBoss ® Highway and Road repair QuickFix polymer. We show how this innovative product line can be effectively utilized to combat common roadway damages, thus contributing significantly to maintaining safe and efficient transportation networks.

Quick Road Repair Solution

Highway Spall, Crack, and Pothole Repair: Advanced Solutions not only for Highways

The maintenance and repair of highways are critical to ensuring the safety and efficiency of transportation systems.

The same is true however for any road in our communities and cities. 

Spalls, cracks, and potholes are common issues that can lead to significant structural damage and pose risks to drivers. SealBoss® 6060 QuickFix offers a solution how these repairs can be conducted quickly and with permanence. 

Understanding Road Damage

Road and highway damage typically manifests as spalls, cracks, or potholes.

These damages can be caused by a range of factors, including thermal expansion, freeze-thaw cycles, excessive load, and environmental degradation. Addressing these issues promptly is vital to prevent further deterioration and ensure road safety.

The Role of Polymer Products in Highway Repair

Polymer products, particularly polyurethane-based compounds like SealBoss  6060 QuickFix, have emerged as effective solutions for repairing highway damages. These products offer several advantages over traditional repair methods, such as asphalt patching or cementitious repairs.

Key Advantages

  • Extremely Rapid Setting Time: Enables quicker return to service, minimizing traffic disruptions.
  • Deep Penetration: Ensures comprehensive repair by filling even the smallest cracks and voids.
  • Flexibility and Strength: Accommodates some structural movements while providing durable repair.
  • Chemical Resistance: Withstands exposure to various chemicals, fuels, oils, and environmental factors.
  • Ease of Application: Simplifies the repair process, allowing for efficient use even in challenging conditions.

SealBoss 6060 QuickFix: A Closer Look

SealBoss 6060 QuickFix is a two-part  polyurethane product designed for the quick and effective repair of concrete and asphalt surfaces. Its low viscosity allows for deep penetration into fine cracks and pores, ensuring a strong bond, and semi-flexible, long-lasting repair.

 Properties

  • Fast Cure: Moderate traffic loads can resume within 15 minutes at 70°F (21°C).
  • Temperature Versatility: Effective in temperatures ranging from -20°F (-29°C) to 120°F (49°C).
  • Aggregate Compatibility: Can be used with various aggregates for different repair needs.
  • 100% Solids and VOC Free: Environmentally friendly with no harmful emissions.

Application Guidelines

To achieve the best results with SealBoss® 6060 QuickFix, a systematic approach to application is advised.

Surface Preparation

  • Cleaning: Remove all debris, oils, and loose materials. For deep cracks, saw-cutting and thorough dust removal are recommended.
  • Drying: Ensure the repair area is completely dry before application.
  • Roughening: Expose clean, rough concrete or asphalt surfaces for better adhesion.

Mixing and Application

  • Mixing: Equally proportion components A and B is important. Use appropriate application equipment such as the SealBoss JM Pro2 Pump System.
  • Application Method: Apply the mixed product to the bottom of the crack or pothole, working upwards in layers. For deep repairs, alternate between applying the product and adding aggregate until the desired grade is achieved.
  • Curing: Allow the product to set, with traffic resumption times varying based on temperature conditions.
  • Equipment Care: Keep all equipment dry and clean to prevent contamination and ensure effective application.
  • Professional Use: The product is designed for professional use; consulting a SealBoss technician for specific project requirements is advisable.

Conclusion

The use of advanced polymer products like SealBoss® 6060 QuickFix represents a significant leap forward in fast and effective highway repair technology. These materials offer rapid, durable, and environmentally friendly solutions to common roadway damages. By understanding the properties and application techniques of these products, professionals can ensure effective repairs, ultimately contributing to safer and more reliable community roads and highways.

Related Links

Recent Posts

More Posts

Archives
Categories
Scroll to Top