

July 16, 2024

Subject Report of ASTM C881 (AASHTO M235) Testing Product: SealBoss 4040 LV Lab No.: 24-1090

To Whom it May Concern:

SGS Testing Engineering & Consulting Services, Inc. (SGS TEC Services) is an AASHTO R18, ANS/IEC/ISO 17025:2017, and Army Corps of Engineers accredited laboratory. SGS TEC Services is pleased to present this report of testing on the subject product submitted to our laboratory in June of 2024. Testing was performed in accordance with the terms and conditions of our Service Agreement. These test results pertain only to the sample tested. The purpose of the testing was to evaluate the submitted product in accordance with the Standards referenced below:

The purpose of the testing was to evaluate the subject submitted product in accordance with ASTM C881-20 (AASHTO M235-13) Standard Specification for Epoxy-Resin Base Bonding Systems for Concrete. It is our understanding that the product is to be designated as Grade 1, Class C, Type IV epoxy-resin system. The epoxy was tested for compliance to the requirements listed in Table 1 of ASTM C881 (AASHTO M235). Information pertaining to the mixing procedures and product designation are reported in Table 1. Ambient conditions and curing procedures are reported in Table 2. Summary test results are reported in Table 3 & 4. Test results for each method are attached to this report. The testing was performed in accordance with the following test methods:

- ASTM C881-20 Standard Specification for Epoxy-Resin Bonding Systems for Concrete • AASHTO M235-13 Standard Specification for Epoxy-Resin Bonding Systems for Concrete Bond Strength of Epoxy-Resin Systems Used with Concrete by Slant Shear • ASTM C882-20 • ASTM D570-18 Standard Test Method for Water Absorption of Plastics Standard Specification for Tensile Properties of Plastics • ASTM D638-22 • ASTM D648-18 Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position • ASTM D695-15 Standard Test Methods for Compressive Properties of Rigid Plastics Standard Test Method for Viscosity of Epoxy Resins and Related Components • ASTM D2393-86
- ASTM D2566-86 Linear Shrinkage of Cured Thermosetting Casting Resins During Cure

SGS TEC SERVICES 235 Buford Drive | Lawrenceville GA 30046 770-995-8000 | www.tecservices.com

Classification of epoxy-resin bonding systems consists of a Type, Grade, and Class. The Type distinguishes the applications for which the epoxy-resin system may be used.

- Type I For use in non-load bearing application for bonding hardened concrete to hardened concrete and other materials, and as a binder in epoxy mortars or epoxy concretes.
- Type II For use in non-load bearing applications for bonding freshly mixed concrete to hardened concrete.
- Type III For use in bonding skid-resistant materials to hardened concrete and as a binder in epoxy mortars or epoxy concretes used on traffic bearing surfaces (or surfaces subject to thermal or mechanical movements).
- Type IV For use in load bearing applications for bonding hardened concrete to hardened concrete and other materials and as a binder for epoxy mortars and concretes.
- Type V For use in load bearing applications for bonding freshly mixed concrete to hardened concrete.
- Type VI For bonding and sealing segmental precast elements, as in segment-by-segment erection, and for span-by-span erection when temporary post tensioning is applied.
- Type VII For use as a non-stress carrying sealer for segmental precast elements when temporary post tensioning is not applied as in span-by-span erection.

Grade systems are defined according to the flow characteristics of the epoxy-resin system.

- Grade 1 Low Viscosity
- Grade 2 Medium Viscosity
- Grade 3 Non-Sagging Consistency

Classes A, B, and C are defined for Types I through V, and Classes D, E, and F are defined for Types VI and VII, in accordance with the range of temperatures for which they are suitable.

- Class A For use below 40 °F [4 °C] the lowest allowable temperature to be defined by the manufacturer of the product.
- Class B For use between 40 and 60 °F [4 and 15 °C]
- Class C For use above 60 °F [15 °C] the highest allowable temperature to be defined by the manufacturer of the product.
- Class D For use between 40 and 65 °F [4 and 18 °C] for Type VI and VII applications.
- Class E For use between 60 and 80 °F [15 and 30 °C] for Type VI and VII applications.
- Class F For use above 75 °F [25 °C] for Type VI and VII applications, the highest allowable temperature to be defined by the manufacturer of the product.

All materials were weighed to the nearest 0.1 gram. A timer was started as the components were combined. Once thoroughly mixed, 60 grams of the prepared epoxy was transferred to an unwaxed cup and probed every two minutes with a wooden tongue depressor until gelation occurred. Mixing time was added to calculate gel time. The Brookfield DV-E Viscometer was leveled prior to testing, and the subject product was transferred to a 500 mL plastic cup capable of accommodating the viscometer spindle. The spindle was submerged in the material up to the reference mark and adjusted to the highest spindle speed capable of achieving a reading between 20% and 80% of torque. Viscosity was recorded in centipoise and is reported with spindle size, and motor speed.

ASTM C882 – Shear Bond Strength

The mixed material was applied to the surface of two hardened mortar sections cut at a 30-degree angle. The hardened sections were pressed together and allowed to cure at the designated temperature until the time of testing. The specimens were capped with sulfur in accordance with ASTM C617 and loaded at a rate of 35 ± 7 psi/sec. in accordance with ASTM C39 until failure. The peak load and failure type were

ASTM D570 – Water Absorption

2.00" x 0.25" cylindrical specimens were cast and cured at respective temperature until the time of testing. The initial weight and dimensions of the specimens was determined prior to immersion in the solutions. The specimens were immersed in water for 24 hours at standard laboratory temperature. The specimens were removed from the water, dried, and final weight and volume determinations recorded.

ASTM D638 - Tensile Properties

Type I specimens were cast by client and shipped to SGS TEC for final curing at respective temperature until the time of testing. The rate of testing was 0.2 in./min of crosshead displacement. Elongation was determined using an extensioneter with a 2.00" gage length.

ASTM D648 – Deflection Temperature under Load

5.00" x 0.50" x 0.50" specimens were cast and cured at respective temperature until the time of testing. Prior to testing, the width and depth of each specimen was measured three times using a digital micrometer. The average width and depth were used to calculate a total applied load equal to a fiber stress of 264 psi. Specimens were loaded edgewise into the testing apparatus, and center point loaded using a span length of 4". The testing apparatus was immersed in a bath of Precision B+ paraffin oil at room temperature and the calculated load was applied. The deflection measurement gage was adjusted to zero five minutes after the load was applied, and the bath was heated at a rate of 2.0 ± 0.2 °C/min. Temperature was recorded when each specimen deflected 0.01".

ASTM D695 - Compressive Properties

1.00" x 2.00" cylindrical specimens were cast and cured at respective temperature until the time of testing. The rate of testing was 0.05 in./min of crosshead displacement.

07/16/24

Table 1 – I founct finite mation & which i oper tions						
Product Name	SealBoss 4040 LV					
Lot # A Exp Date	8826 NA					
Lot # B Exp Date	8728 NA					
Grade Designation	1					
Class Designation	С					
Type Designation	IV					
Components	2 Component					
Part A (g)	100					
Part B (g)	43					
Mixing Time	3 minutes					
Mixer Type	Hand					

Table 1 – Product Information & Mix Proportions

Table 2 – Mixing & Cure Conditions

Test Method	Conditioning and Mixing Temperature of Epoxy (± 2°F)	Curing Temperature of Epoxy (± 2°F)
Gel Time	73°F	NA
Viscosity (Grade 1 & 2 only)	73°F	NA
Heat Deflection	73°F	73°F
Lineage Shrinkage	73°F	73°F
Water Absorption	73°F	73°F
Tensile Strength & Elongation*	73°F	60°F
Compressive Properties	73°F	60°F
Shear Bond – H H	73°F	60°F

*Note – Optional for Grade 3 bonding agents

Table 3 – Plastic Properties

ASTM Te	Tost Proporty	ty Age	73°F	ASTM C881				
	Test Property		7 3 F	Type I	Type II	Type IV	Type V	
D2393	(<i>Poise</i>) - Grade	Plastic	3.2	20 (max)	20 (max)	20 (max)	20 (max)	
C881	Gel Time1 (min.)	Plastic	11	30 (min)	30 (min)	30 (min)	30 (min)	

¹ The purchaser may specify a minimum gel time of 5 minutes for Types I and IV when automatic proportioning, mixing, and dispensing equipment are used.

ASTM	Test Property	A (70)	60°F		ASTM	I C881	
ASIM	Test Property	Age	00 F	Type I	Type II	Type IV	Type V
C882	Shear Bond Hardened to	2 days	1,540	1,000 (min)	NA	1,000 (min)	NA
0.002	Hardened (psi)	14 days	2,370	1,500 (min)	NA	1,500 (min)	NA
D695	Yield Strength	7 days	12,500	8,000 (min)	5,000 (min)	10,000 (min)	8,000 (min)
D095	Compressive Modulus (psi)	7 days	416,000	150,000 (min)	90,000 (min)	200,000 (min)	150,000 (min)
D638	Tensile Strength (psi)	7 days	9,480	5,000 (min)	2,000 (min)	7,000 (min)	6,000 (min)
D030	% Elongation	7 days	2.1	1.0 (min)	1.0 (min)	1.0 (min)	1.0 (min)
			Tests Conditioned and Cured at 2	75°F			
D2566	Linear Shrinkage (%)	48 hrs	0.0000	0.005 (max)	0.005 (max)	0.005 (max)	0.005 (max)
D570	Water Absorption (%)	14 days	0.2	1% (max)	1% (max)	1% (max)	1% (max)
D648	Heat Deflection (^o F)	7 days	147	NA	NA	120° (min)	120° (min)

Table 4 – Hardened Properties

Summary

Based on the results of our testing to date the submitted product meets the following designations per ASTM C881/AASHTO M235:

Grade 1 | Class C | Type I, IV

We appreciate the opportunity to provide our services to you on this project. Please do not hesitate to contact us at your convenience if you have any questions about this report or if we may be of further assistance.

Sincerely, SGS TESTING, ENGINEERING & CONSULTING SERVICES, INC.

and

Tom Dang Project Manager

landom

James. G. McCants III Laboratory Manager, Chemist

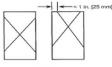

Specimen ID	Diameter (in.)	Thickness (in.)	Initial Weight (g)	Weight After 24hr Soak (g)	Difference (g)	% Absorption
1	2.000	0.122	7.3774	7.3924	0.0150	0.20
2	2.000	0.129	7.1637	7.1785	0.0148	0.21
3	2.000	0.130	7.5953	7.6108	0.0155	0.20
					Average	0.20

Table 5 – ASTM D570 – Water Absorption

Table 6 - ASTM D648 - Heat Deflection

Specimen ID	Avg. Width (in.)	Avg. Depth (in.)	Total Load Applied (g) 264 psi	Heat Deflection Temperature (°F)	
1	0.497	0.498	2458.4	147.0	
2	0.498	0.500	2479.8	146.8	
			Average	146.9	

Figure 1 – Fracture Types per ASTM C39

Type 3 Columnar vertical cracking through both ends, no well-formed cones

Type 1 Reasonably well-formed cones on both ends, less than 1 in. [25 mm] of cracking through caps

Type 4 Diagonal fracture with no cracking through ends; tap with hammer to distinguish from Type 1

Type 5 Side fractures at top or bottom (occur commonly with unbonded caps)

Type 6 Similar to Type 5 but end of cylinder is pointed

07/16/24

...

Curing Temp.	Age	Specimen ID	Dummy Diameter (in.)	Slant Height (in.)	Bond Area (in2)	Peak Load (lbf)	Bond Strength (psi)	Total Area of Voids	Fracture Type	Average (psi)
60°F		1	3.00	6.00	14.14	23,792	1,680	NA	3	1,540
	2 day	2	3.00	6.00	14.14	20,879	1,480	NA	3	
		3	3.00	6.00	14.14	20,816	1,470	NA	3	
	14 day	1	3.00	6.00	14.14	35,538	2,510	NA	3	2,370
		2	3.00	6.00	14.14	32,995	2,330	NA	3	
		3	3.00	6.00	14.14	32,081	2,270	NA	3	

Table 8 – ASTM C882 – Hardened to Hardened – Shear Bond Strength

Table 9 – ASTM D695 – Compressive Strength

Curing Temp.		Diameter (in.)	Height (in)	Area (<i>in</i> ²)	Yield Load (lbf.)	Peak Load (lbf.)	Compressive Yield Strength (psi)	Peak Stress (psi)	Compressive Modulus (<i>psi</i>)
	1	1.00	2.00	0.7854	9,457	9,457	12,040	12,040	401,800
	2	1.00	2.00	0.7854	9,975	9,975	12,700	12,700	401,700
60°F	3	1.00	2.00	0.7854	9,786	9,786	12,460	12,460	427,100
00 1	4	1.00	2.00	0.7854	10,415	10,415	13,260	13,260	431,500
	5	1.00	2.00	0.7854	9,474	9,474	12,060	12,060	418,100
						Average	12,500	12,500	416,000

Table 10 – ASTM D638 – Tensile Strength

Curing Temp.	Specimen ID	Width (in.)	Thickness (in)	Area (in ²)	Peak Load (lbf.)	Peak Stress (psi)	% Elongation
	1	0.505	0.132	0.0667	593	8,890	2.0
	2	0.503	0.129	0.0646	617	9,540	1.9
60°F	3	0.503	0.129	0.0646	622	9,640	1.8
00 F	4	0.503	0.125	0.0628	602	9,580	2.3
	5	0.502	0.130	0.0654	636	9,730	2.7
					Average	9,480	2.1